1. Дано: КМРТ - трапеция, КМ=РТ, КТ=14 дм, МР=8 дм. МН - высота, МН=4 дм. Найти КМ.
Решение: проведем высоту РС.
МР=СН=8 дм.
ΔКМН=ΔРСТ по катету и гипотенузе, КН=СТ=(14-8):2=3 дм.
Рассмотрим ΔКМН - прямоугольный, КН=3 дм, МН=4 дм, значит КМ=5 дм (египетский треугольник).
ответ: 5 дм.
2. Дано: КМСТ - прямоугольник, Р=56 см, КТ-МК=4 см. Найти МТ.
Решение: МК+КТ=56:2=28 см. Пусть КТ=х см, тогда МК=х-4 см.
Составим уравнение: х+х-4=28; 2х=32; х=16.
КТ=16 см; МК=16-4=12 см. Тогда по теореме Пифагора
МТ=√(16²+12²)=√(256+144)=√400=20 см.
(или просто: МТ=20 см, т.к. МК:КТ=12:16=3:4; МКТ - египетский треугольник)
ответ: 20 см.
Даны : А(2,1,0), М(3,-2,1), N(2,-3,0).
Находим координаты направляющего вектора прямой NM:
NM: (1; 1; 1).
Принимаем координаты направляющего вектора прямой NM как соответствующие координаты нормального вектора n плоскости α :
n = (A; B; C). То есть, A = 1, B = 1, C = 1.
Записываем уравнение плоскости, проходящей через точку А(2; 1; 0) и имеющей нормальный вектор n(A; B; C), в виде:
A(x -x1) + B(y - y1) + C(z - x1) - это и есть искомое уравнение плоскости, проходящей через заданную точку пространства перпендикулярно к заданной прямой.
Подставляем данные -
α: 1(x -2) + 1(y - 1) + 1z = x + y + z - 3 = 0.
ответ: уравнение плоскости α: x + y + z - 3 = 0.
Поделитесь своими знаниями, ответьте на вопрос:
Дан прямоугольный треугольник LKP, угол K-прямой. Из вершины L к катету KP проведена биссектриса LB и BP/BK=5/3. Чему равен косинус угла LPK?
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум углам (два угла равны по условию, еще два угла вертикальные). Тогда:
\frac{AO}{OB} = \frac{PO}{OM}
OB
AO
=
OM
PO
Так как медианы точкой пересечения делятся в отношении 2:1, то:
\begin{gathered}\frac{ \frac{2}{3} AM}{ \frac{2}{3} BP} = \frac{\frac{1}{3}BP}{\frac{1}{3}AM} \\\ \frac{ AM}{ BP} = \frac{BP}{AM} \\\ AM^2=BP^2 \\\ \Rightarrow AM=BP=1\end{gathered}
3
2
BP
3
2
AM
=
3
1
AM
3
1
BP
BP
AM
=
AM
BP
AM
2
=BP
2
⇒AM=BP=1
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
\begin{gathered}AM^2=AC^2+CM^2-2\cdot AC\cdot CM\cdot\cos ACB \\\ 1^2=(2CM)^2+CM^2-2\cdot 2CM\cdot CM\cdot0.8 \\\ 1=4CM^2+CM^2-3.2CM^2 \\\ 1=1.8CM^2 \\\ CM^2= \frac{1}{1.8} = \frac{5}{9} \\\ CM= \frac{ \sqrt{5} }{3}\end{gathered}
AM
2
=AC
2
+CM
2
−2⋅AC⋅CM⋅cosACB
1
2
=(2CM)
2
+CM
2
−2⋅2CM⋅CM⋅0.8
1=4CM
2
+CM
2
−3.2CM
2
1=1.8CM
2
CM
2
=
1.8
1
=
9
5
CM=
3
5
Следовательно стороны в два раза больше: AC=BC= \frac{2 \sqrt{5} }{3}AC=BC=
3
2
5
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
$$\begin{gathered}S= \frac{1}{2} \cdot AC\cdot BC\cdot \sinACB \\\ S= \frac{1}{2} \cdot AC^2\cdot \sqrt{1-\cos ACB} \\\ S= \frac{1}{2} \cdot ( \frac{2 \sqrt{5} }{3})^2\cdot \sqrt{1-0.8}=\frac{1}{2} \cdot \frac{4\cdot5 }{9} \cdot \frac{3}{5} = \frac{2}{3}\end{gathered}$$
ответ: 2/3