Объяснение:
Линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
Пусть плоскость проведённая через B, D и серединную точку M ребра B₁C₁ пересекается с плоскостью B₁C₁А₁ по прямой MN. M∈B₁C₁, N∈D₁C₁.
⇒MN||BD⇒BDNM-трапеция
BD||B₁D₁; MN||BD⇒MN||B₁D₁
MN-средняя линия треугольника B₁C₁D₁
ABCDA1B1C1D1- правильный прямоугольный параллелепипед⇒ABCD-квадрат, а боковые грани прямоугольники.
B₁M=0,5B₁C₁=ND₁, DD₁=BB₁, ∠MB₁B=∠ND₁D=90°⇒ΔMB₁B=ΔND₁D⇒MB=ND⇒
⇒BDNM-равнобедренная трапеция. Ч.Т.Д.
Поделитесь своими знаниями, ответьте на вопрос:
Реши задачи по готовым чертежам 1.Докажи , что a||b
Объяснение:
#1
Угол 1 и угол 2 смежные. Сумма смежных углов равна 180 градусов => 180-43=137°-угол
Угол 3=углу 1 => угол 1 и угол 3-накрест.леж=> а||б по признаку накрест.леж углов
#2
Рассмотрим треугольники СОМ и КОА
1. Угол СОМ=углу КОА, тк вертикальные
2. МО=ОК, тк т.О середина отрезка МК
3. СО=ОА, тк т.О середина отрезка АС => треугольник СОМ=треугольнику КОА по двум сторонам и углу между ними
В равных треугольниках соответствующие элементы равны => угол КАО=углу ОСМ
Угол КАО и угол ОСМ -накрест.леж=> СМ||АК по признаку накрест.леж углов