Wlad967857
?>

Точки M и N — расположены соответственно на сторонах AB и AC треугольника ABC, причем AM : MB = AN : NC = 2 : 3. Выразите вектор MN через вектор CB.​

Геометрия

Ответы

Виктория Нина

Решение задания прилагаю


Точки M и N — расположены соответственно на сторонах AB и AC треугольника ABC, причем AM : MB = AN :
Михайлович Гуртовая929
ответ: АВС=94 град     Можно решить в двух вариантах.Можно решить в двух вариантах.                     В             D       А                                                                                С Дано: ∆ АВС            СD – биссектриса           ∟АDС=112°            ∟BCD=18° Найти: ∟ АВС = ? Решение: 1 вариант: ∆ АВС=180°=  ∟ВАС+ ∟ АВС+ ∟ АСВ.  Отсюда ∟ АВС = 180 – (∟ВАС+ ∟ АСВ) ∟BCD=∟АCD ∟ АСВ= ∟BCD+∟АCD  Т.к.  СD – биссектриса и делит ∟ АВС пополам, то ∟BCD=∟АCD=18°. Тогда ∟ АСВ=18+18=36°. ∟ВАС=∟DАC     ∟DАC= 180 – (∟АCD+∟АDC)=180-(18+112)=50°. ∟ АВС=180-(50+36)=94°   2 вариант: ∟ АВС=∟CBD ∟CBD=180-(∟BCD+∟BDC) ∟BDC=180 -∟АDC (∟АDB –смежный угол) = 180-112=68° ∟CBD=180-(18+68)= 94°
magsh99

66 см²

Объяснение:

Медианы треугольника пересекаются в одной точке, и  точкой пересечения делятся в отношении 2:1,  считая от вершины.

⇒  ВМ:МК=2:1.

У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой  ВК, содержащей стороны ВМ и МК этих треугольников.

Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты)   ⇒

Samk/Sabm=1/2   ⇒

11/Sabm=1/2 =>

22=Sabm.

Sabk=22см²+11см²=33см²

медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.

Sabc=33*2=66см²

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Точки M и N — расположены соответственно на сторонах AB и AC треугольника ABC, причем AM : MB = AN : NC = 2 : 3. Выразите вектор MN через вектор CB.​
Ваше имя (никнейм)*
Email*
Комментарий*