dashanna04225
?>

Определи косинус острого угла, если дан синус того же угла. (Дробь сокращать не нужно.) ответ: если sinα=60/61, то cosα=

Геометрия

Ответы

Nertman45

cos²α+sin²α=1

sinα=√(1-cos²α)

sin α=√(1-9²/15²)=√(1-81/225)=√(144/225)=12/15=4/5

Объяснение:

anechcak

Если два треугольника имеют равный угол, то площади этих треугольников относятся как произведения сторон, заключающих этот угол.

Дано: ΔАВС, ΔА₁В₁С₁, ∠А = ∠А₁.

Доказать: Sabc /Sa₁b₁c₁ = (AB · AC) /  (A₁B₁ · A₁C₁) .

Доказательство:

Наложим треугольники так, чтобы угол А совместился с углом А₁, а стороны А₁В₁ и А₁С₁ лежали на лучах АВ и АС соответственно.

Проведем ВН - высоту ΔАВС. ВН является так же и высотой треугольника А₁ВС₁.

Площади треугольников, имеющих общую высоту, относятся как их основания (стороны, к которым проведена высота):

Sabc / Sa₁bc₁ = AC / A₁C₁          (1)

Проведем С₁Н₁ - высоту ΔА₁В₁С₁. С₁Н₁ является так же и высотой треугольника АВС₁, значит

Sabc₁ / Sa₁b₁c₁  = AB / A₁B₁        (2)

Перемножим равенства (1) и (2):

(Sabc / Sa₁bc₁) · (Sabc₁ / Sa₁b₁c₁) = (AC / A₁C₁) · (AB / A₁B₁)

Так как Sa₁bc₁ и Sabc₁  это площадь одного и того же треугольника, она сокращается и получаем:

Sabc / Sa₁b₁c₁ = (AB · AC) /  (A₁B₁ · A₁C₁)

Борисовна_Кашутина

Если два треугольника имеют равный угол, то площади этих треугольников относятся как произведения сторон, заключающих этот угол.

Дано: ΔАВС, ΔА₁В₁С₁, ∠А = ∠А₁.

Доказать: Sabc /Sa₁b₁c₁ = (AB · AC) /  (A₁B₁ · A₁C₁) .

Доказательство:

Наложим треугольники так, чтобы угол А совместился с углом А₁, а стороны А₁В₁ и А₁С₁ лежали на лучах АВ и АС соответственно.

Проведем ВН - высоту ΔАВС. ВН является так же и высотой треугольника А₁ВС₁.

Площади треугольников, имеющих общую высоту, относятся как их основания (стороны, к которым проведена высота):

Sabc / Sa₁bc₁ = AC / A₁C₁          (1)

Проведем С₁Н₁ - высоту ΔА₁В₁С₁. С₁Н₁ является так же и высотой треугольника АВС₁, значит

Sabc₁ / Sa₁b₁c₁  = AB / A₁B₁        (2)

Перемножим равенства (1) и (2):

(Sabc / Sa₁bc₁) · (Sabc₁ / Sa₁b₁c₁) = (AC / A₁C₁) · (AB / A₁B₁)

Так как Sa₁bc₁ и Sabc₁  это площадь одного и того же треугольника, она сокращается и получаем:

Sabc / Sa₁b₁c₁ = (AB · AC) /  (A₁B₁ · A₁C₁)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Определи косинус острого угла, если дан синус того же угла. (Дробь сокращать не нужно.) ответ: если sinα=60/61, то cosα=
Ваше имя (никнейм)*
Email*
Комментарий*