АВСА1В1С1 - усечённая пирамида. Предложенное сечение - трапеция с основаниями, равными высотам, проведённым в основаниях пирамиды. АМ - высота в тр-ке АВС, ВМ=МС. А1М1 - высота в тр-ке А1В1С1 В1М1=С1М1. Высота в прямоугольном тр-ке вычисляется по ф-ле h=а√3/2 АМ=8√3·√3/2=12. А1М1=4√3·√3/2=6. АММ1А1 - трапеция. Её площадь: S=(a+b)h/2=(АМ+А1М1)h/2 ⇒ h=2S/(АМ+А1М1)=2·54/(12+6)=6. Площадь правильного тр-ка: S=a²√3/4. S1=(8√3)²·√3/4=48√3. S2=(4√3)²·√3/4=12√3. Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3 V=6(48√3+√(48√3·12√3)+12√3)/3=2(48√3+24√3+12√3)=168√3.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
у трикутнику АВС відомо, що кут А = 90° , АС =3 см, ВС = 15. Чому дорівнює cos C?
Xm=(Xa+Xb)/2 = (4-2)/2=1. Ym=(Ya+Yb)/2= (5-1)/2=2. M(1;2). Xk=(Xa+Xb)/2 = (-2-2)/2=-2. Yk=(Ya+Yb)/2= (5+3)/2=4. K(-2;4).
б) |MC|=√[(Xc-Xm)²+(Yc-Ym)²]=√[(-2-1)²+(3-2)²]=√10.
|KB|=√[(Xb-Xk)²+(Yb-Yk)²]=√[(4+2)²+(-1-4)²]=√61.
в) |MK|=(1/2)*|BC|. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=
√[(-2-4)²+(3+1)²]=√52. |MK|=√52/2=√13.
Или так: |MK|=√[(Xk-Xm)²+(Yk-Ym)²]=√[(-2-1)²+(4-2)²]=√13.
г) |AB|=√[(Xb-Xa)²+(Yb-Ya)²]=√[(4+2)²+(-1-5)²]=6√2. |BC|=√[(Xc-Xb)²+(Yc-Yb)²]=√[(-2-4)²+(3+1)²]=√52.
|AC|=√[(Xc-Xa)²+(Yc-Ya)²]=√[(-2+2)²+(3-5)²]=2.