DE||AC, DE=AC/2 (средняя линия)
∠ADE+∠DAC=180 (внутренние углы при параллельных)
Пусть биссектрисы углов ADE и DAC пересекаются в точке X.
∠ADX+∠DAX =90 => ∠AXD=90
Из точки D можно опустить только один перпендикуляр к прямой AI =>
точки X и I совпадают => DI - биссектриса ∠ADE
В трапеции ADEC биссектрисы трех углов пересекаются в одной точке - трапеция описанная (т.е. имеет вписанную окружность).
В описанном четырехугольнике суммы противоположных сторон равны.
AD+CE =AC+DE
DE =AC/2 =0,5 => AC+DE =1,5 =AD+CE
AB+BC =2(AD+CE) =2*1,5 =3
P(ABC) =AB+BC+AC =3+1 =4
Поделитесь своими знаниями, ответьте на вопрос:
Найдите периметр треугольник АВС если его вершины имеют координаты А(2;2) В(5;7) и С(11;5)
1) BC -?
2) (меньшая сторона) -?
1) AB/sin∠C =BC/sinA = AC/sin∠B = 2R (теорема синусов).
∠C =180° -(∠A +∠B )= 180° -(30° +105°) =45°.
16/sin45° =BC/sin30°⇒
BC =15*(sin30°/sin45°) =16*(1/2) / (1/√2) =(16√2)/2 =8√2≈11,28 (см).
---
2) меньшая сторона та, которая лежит против меньшего угла ,
эта сторона BC(лежит против меньшего угла ∠A=30°).
длину AC не требуется , но :
AC /sin∠B = AB/sin∠C ⇒AC =AB*sin(∠B)/(sin∠C)=
16* sin105°/(1/√2) =16√2sin105°=16√2*√2(√3 +1)/4 =8(√3 +1) .
sin105° =sin(180°-75°) =sin75°=sin(45°+30°) =...
или
sin105° =sin(60°+45°) =sin60°*cos45°+cos60°*sin45°=
(√3/2)*(√2/2)+(1/2)*(√2/2) =√2(√3 +1)/4.
* * * * * * * Второй
∠C =180° -(∠A+∠B) =180° -(30°+105°) =45°.
Проведем высоту BH⊥AC (∠AHB=90°) ⇒ Прямоугольный треугольник BHC равнобедренный CH =BH ,т.к. ∠C =45°.
По теореме Пифагора из ΔBHC:
BC =√ (BH² +CH²) =√(2BH²) =BH√2 . Но из ΔABH BH=AB/2 =8(как катет против угла
∠A =30°). Значит BC =BH√2 =8√2.