maksimovskiy7657
?>

решить геометрию ниже прикреплю)

Геометрия

Ответы

varvara-kulkova
Подробно.

а) По определению проекция фигуры на плоскость - совокупность проекций всех точек этой фигуры на плоскость проекции.

Точка К проецируется в основание перпендикуляра КА, т.е. в т. А.

Т. В и С ∆ КВС лежат в плоскости ромба.  Через две точки можно провести только одну прямую. ⇒ 

Все точки сторон ∆ КВС проецируются на стороны ∆ АВС. ⇒ 

∆ АВС проекция ∆ КВС на плоскость ромба АВCД.

б) КА перпендикулярен плоскости ромба, следовательно, перпендикулярен любой прямой, проходящей в этой плоскости через т. А. ⇒КА⊥АС

Диагонали ромба взаимно перпендикулярны.⇒АС⊥ВД

АО - высота равнобедренного ∆ АВД.  Из ∆ АОВ по т.Пифагора АО=√(B²-BO²)=√(25-9)=4

 Расстояние от точки до прямой равно длине проведенного между ними перпендикуляра. 

КО по т. о 3-х перпендикулярах перпендикулярен ВД. 

Из прямоугольного  ∆ КАО расстояние КО=√(КА²+АО*)=√(9+16)=5 см


Можно с рисунком отрезок ка длиной 3 см-перпендикуляр к плоскости ромба авсд,в котором ав=5 см,вд=6с
Zeegofer

В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.

S(осн.)=S_{ABC}=\dfrac{AB^2\sqrt3}{4} =\dfrac{36\sqrt3}{4} =9√3 см².

Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.

HM=\dfrac{AB\sqrt3}{6} =\dfrac{6\sqrt3}{6} =√3 см

В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.

DM=\sqrt{12^2+\sqrt3 ^2} =\sqrt{144+3} =√147 см

Боковые грани правильной пирамиды это равные треугольники.

S(бок.)=3\cdot S_{ADC} =3\cdot DM\cdot AC\cdot \dfrac12 =\dfrac32 \cdot 6\cdot \sqrt{147} =9√147 см²

S(полн.) = S(осн.)+S(бок.) = 9√3 + 9√147 см²

ответ: 9√3 + 9√147 см².


Вправильной треугольной пирамиде сторона основания равна 6 см, а высота пирамиды равна 12см. вычисли

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить геометрию ниже прикреплю)
Ваше имя (никнейм)*
Email*
Комментарий*