1. Рассмотрим ΔAOC и ΔBOC: ∠AOC=∠BOC (по условию), AO=OB (по условию), CO - общая сторона. ΔAOC=ΔBOC (по двум сторонам и углу между ними), следовательно, CB=CA.
2. Рассмотрим ΔCQA и ΔCQB: CQ - общая сторона, CB=CA (из равенства выше), ∠BCQ=∠ACQ (CQ - биссектриса ∠C). ΔCQA=ΔCQB (по двум сторонам и углу между ними), следовательно, AQ=BQ ,∠ABC=∠BAC / что и требовалось доказать.
Объяснение:
ver2bit
17.01.2022
1.Сформулируйте основное свойство расположения точек относительно прямой на плоскости.
ответ: квадрат, прямоугольник, треугольник! 3.Назовите основные фигуры на плоскости. основными фигурами на плоскости является точка и прямая! 4.основное свойство расположение точек и прямой
ответ:из 3 точек на прямой 1 лежит между 2 другими! 5.Какой треугольник называется равнобедренным
ответ: если у него 2 стороны равны! Пока только 5 (
Soliyabronzoni
17.01.2022
Эту задачу можно решить векторным методом или геометрическим. Решаем геометрическим Находим длины сторон по координатам. Вектор АВ( -2; 4; 2). |AB| = √(4+16+4) = √24 ≈ 4,8989795. Вектор ВС( 0; -4; -4). |BC| = √(0+16+16) = √32 ≈ 5,65685425. Вектор АС (;-2; 0; -2 ). |AC| = √(4+0+4) = √8 ≈ 2,8284271. По теореме косинусов находим угол С. cos C = (24+32-8)/(2*√24*√32) = 48/(2√768) = 24/√768 = √3/2. Угол С равен 60 градусов. Внешний угол при вершине С равен 180-60 = 120 градусов. Можно добавить, что треугольник АВС - прямоугольный: сумма квадратов сторон АВ и АС равна квадрату стороны ВС.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
3. Докажите, что ∠САО = ∠СВО, если ОА = ОВ, а AK = BK.
Думала, думала и надумала)
1. Рассмотрим ΔAOC и ΔBOC: ∠AOC=∠BOC (по условию), AO=OB (по условию), CO - общая сторона. ΔAOC=ΔBOC (по двум сторонам и углу между ними), следовательно, CB=CA.
2. Рассмотрим ΔCQA и ΔCQB: CQ - общая сторона, CB=CA (из равенства выше), ∠BCQ=∠ACQ (CQ - биссектриса ∠C). ΔCQA=ΔCQB (по двум сторонам и углу между ними), следовательно, AQ=BQ ,∠ABC=∠BAC / что и требовалось доказать.
Объяснение: