32 cм³ или 8√2 см³
Объяснение:
Обозначим:
сторону основания призмы а - ?
высоту призмы h - ?
Диагональ основания призмы d = a√2
Диагональ призмы D = √(d² + h²) = √(2a² + h²) = 6см
Тогда 2а² + h² = 36 (1)
Площадь боковой поверхности призмы 4аh = 32 (2)
Из (2) получим а = 8/h (3)
Подставим (3) в (1) и получим
2 · 64/h² + h² = 36
128 + h⁴ = 36h²
h⁴ - 36h² + 128 = 0
Замена t = h²
t² - 36t + 128 = 0
D = 1296 - 512 = 784
√D = 28
t₁ = (36 - 28)/2 = 4
t₂ = (36 + 28)/2 = 32
Тогда h₁ = 2(cм) и h₂ = 4√2(см)
а₁ = 8/2 = 4(см) и а₂ = 8 : 4√2 = √2(см)
В 1-м случае объём призмы V = a² · h = 16 · 2 = 32(cм³)
Во 2-м случае V = a² · h = 2 · 4√2 = 8√2(cм³)
Поделитесь своими знаниями, ответьте на вопрос:
У трикутнику DEF сторони DE і EF рівні а EL медіана. За якою ознакою рівні трикутники DEL і FEL
Треугольники равеы по всем трем признакам.
Объяснение:
Треугольники DEL и FEL равны по двум сторонам и углу между ними, так как EL - общая сторона, DE=EF (дано), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (первый признак)
Или: Треугольники DEL и FEL равны по стороне и двум прилежащим к ней углам, так как DE=EF (дано), ∠EDL = ∠EFL (в равнобедренном треугольнике углы при основании равны), а ∠DEL = ∠FEL (в равнобедренном треугольнике медиана является и биссектрисой. (второй признак).
Или по трем сторонам (третий признак), так как DE=EF (дано), EL - общая, а DL = FL, так как EL - медиана.