Тригонометрические формулы
Основные тригонометрические тождества
sin² α + cos² α = 1
tg α · ctg α = 1
tg α = sin α ÷ cos α
ctg α = cos α ÷ sin α
1 + tg² α = 1 ÷ cos² α
1 + ctg² α = 1 ÷ sin² α
Формулы сложения
sin (α + β) = sin α · cos β + sin β · cos α
sin (α - β) = sin α · cos β - sin β · cos α
cos (α + β) = cos α · cos β - sin α · sin β
cos (α - β) = cos α · cos β + sin α · sin β
tg (α + β) = (tg α + tg β) ÷ (1 - tg α · tg β)
tg (α - β) = (tg α - tg β) ÷ (1 + tg α · tg β)
ctg (α + β) = (ctg α · ctg β - 1) ÷ (ctg β + ctg α)
ctg (α - β) = (ctg α · ctg β + 1) ÷ (ctg β - ctg α)
Формулы двойного угла
cos 2α = cos² α - sin² α
cos 2α = 2cos² α - 1
cos 2α = 1 - 2sin² α
sin 2α = 2sin α · cos α
tg 2α = (2tg α) ÷ (1 - tg² α)
ctg 2α = (ctg² α - 1) ÷ (2ctg α)
Формулы тройного угла
sin 3α = 3sin α - 4sin³ α
cos 3α = 4cos³ α - 3cos α
tg 3α = (3tg α - tg³ α) ÷ (1 - 3tg² α)
ctg 3α = (3ctg α - ctg³ α) ÷ (1 - 3ctg² α)
Формулы понижения степени
sin² α = (1 - cos 2α) ÷ 2
sin³ α = (3sin α - sin 3α) ÷ 4
cos² α = (1 + cos 2α) ÷ 2
cos³ α = (3cos α + cos 3α) ÷ 4
sin² α · cos² α = (1 - cos 4α) ÷ 8
sin³ α · cos³ α = (3sin 2α - sin 6α) ÷ 32
Переход от произведения к сумме
sin α · cos β = ½ (sin (α + β) + sin (α - β))
sin α · sin β = ½ (cos (α - β) - cos (α + β))
cos α · cos β = ½ (cos (α - β) + cos (α + β))
Поделитесь своими знаниями, ответьте на вопрос:
І вариант 1.Одна из сторон параллелограмма в 3 раза менше, чем другая, а его периметр равен 48см. Найти меньшую сторону. А) 6см; Б) 4см; В) 12см; Г) 8см. 2.Гипотенуза прямоугольного треугольника равна 13см, а один из катетов равен 12см. Найти площадь треугольника. А) 78см*; Б) 60см*; В)30см*; Г)54см?. 3.Найти площадь квадрата, если радиус окружности, описанной около него, равен 62см. А) 72см*; Б) 144см?; В) 36см*; Г) 18см?. 4.Два угла четырехугольника, вписанного в окружность, равны 102° и 98°. Чему равен наименьший угол этого четырехугольника? А) 68°; Б) 72°; В) 78°; Г) 54°. 5.В равнобедренном ААВС основание AC=16см, сторона AB=18см. На сторонах AB и ВС взяты точки Ри К так, что PK|| АC, PK=12см. Найти Слину отрезка ВК. 1) 13, 5см; Б) 14см; В) 12см; Г) 10, 25см. -В ААВС биссектриса СР делит сторону АВ на отрезки AP=4см и В=5см. Найти периметр А, если AC=10см. р 27см; Б) 31, 5см; В) 29, 5см; Г) 32см. Сторона ромба 5см, а одна из диагоналей (см. Найти высоту ромба. Найти площадь равнобокой трапеции, основания которой равны 24см и «см, а боковая сторона равна 5см.
10 и 8 стороны
Объяснение:
Если одна сторона 10, а площадь 64, то высота 6.4см
Если провести эту высоту то образуется прямоугольный треугольник. Косинус его угла 0.6. Косинус это отношение прилежащего катета к гипотенузе. Но нам известен только противолежащий катет. По основному тригонометрическому тождеству найдем синус. Пусть этот угол a.
cos²a + sin²a = 1
0.36 + sin²a = 1
sin²a = 0.64
sina = 0.8 (-0.8 опускаем, т.к в данном случае синус не может быть отрицательным)
Тогда гипотенуза равна 8см. Это и есть вторая сторона.