Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
Дано: DE — средняя линия треугольника ABC.
Доказательство. Проведем через точку D прямую, параллельную стороне АВ. По теореме Фалеса она пересекает отрезок АС в его середине, т. е. содержит среднюю линию DE. Значит, средняя линия DE параллельна стороне АВ (рис. 53).
Проведем теперь среднюю линию DF. Она параллельна стороне АС. Четырехугольник AEDF — параллелограмм. По свойству параллелограмма ED = — AF, а так как AF = FB по теореме Фалеса, то ED = АВ. Теорема доказана.
shoko91
24.02.2023
В трапеции АРСD средняя линия равна полусумме оснований. Значит, РС+AD=2·15 РС+25=30 РС=5
ВС=ВР+РС 25=ВР+5 ВР=25-5=20
∠PAD=∠BPA - внутренние накрест лежащие при параллельных ВС и AD и секущей АР. ∠ВАР=∠РАD - биссектриса АР делит угол А пополам.
Значит ∠BPA =∠ВАР и треугольник АВР - равнобедренный АВ=ВР=20
Противоположные стороны параллелограмма равны CD=AB=20
Из треугольника АСD по теореме косинусов: АС²=AD²+DC²-2·AD·DC·cos ∠D (5√46)²=25²+20²-2·25·20·cos ∠D 1150=625+400-1000·cos ∠D
cos ∠D =-0,125
Противоположные углы параллелограмма равны ∠В=∠D
Из треугольника АBP по теореме косинусов: АP²=AB²+BP²-2·AB·BP·cos ∠B АP²=20²+20²-2·20·20·(-0,125)
АP²=400+400+100
АP²=900 AP=30
Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80
ответ. Р=80
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
точки M і N лежать на прямій по один бік від точки K. Яка з цих трьох точок не може лежати між двома іншими?
Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.
Дано: DE — средняя линия треугольника ABC.
Доказательство. Проведем через точку D прямую, параллельную стороне АВ. По теореме Фалеса она пересекает отрезок АС в его середине, т. е. содержит среднюю линию DE. Значит, средняя линия DE параллельна стороне АВ (рис. 53).
Проведем теперь среднюю линию DF. Она параллельна стороне АС. Четырехугольник AEDF — параллелограмм. По свойству параллелограмма ED = — AF, а так как AF = FB по теореме Фалеса, то ED = АВ. Теорема доказана.