Gavrilova2527
?>

Дан прямоугольный треугольник ABC с координатами вершин A(X2; Y2), B(X2; Y1), C(X1; Y1) в прямоугольной системе координат. При этом X1 < X2, а Y1 < Y2. Определите координаты вершин A и C, если этот треугольник повернут на 90 градусов против часовой стрелки относительно вершины B (т. е. координаты вершины B не изменились

Геометрия

Ответы

elena-ruzadom
1. CD = AB = 12 см как противоположные стороны параллелограмма.
Высота ВН делит CD пополам, значит
CH = HD = CD/2 = 12/2 = 6 см

ΔСВН прямоугольный с углом 30°, значит гипотенуза в два раза больше катета, лежащего напротив угла в 30°.
СВ = 2СН = 12 см.
Pabcd = (AB + BC)·2 = (12 + 12)·2 = 48 см

2. Противолежащие углы параллелограмма равны, значит углы А и С равны, значит равны и их половинки.
∠ВМА = ∠МАК как накрест лежащие при пересечении ВС║AD секущей АМ.
∠ВАМ = ∠МАК так как АМ биссектриса, ⇒
∠ВМА = ∠ВАМ и значит ΔВАМ равнобедренный.
ВА = ВМ = 6 см

∠ВМА = ∠МСК, а это соответственные углы при пересечении прямых АМ и СК секущей ВС, значит
АМ║СК,
СМ║АК так как лежат на противоположных сторонах параллелограмма, значит
АМСК - параллелограмм, ⇒
МС = АК = 4 см

ВС = 6 + 4 = 10 см

Pabcd = (AB + BC)·2 = (6 + 10)·2 = 32 см

3. ∠BOD  - внешний угол треугольника ВОК, равен сумме двух внутренних, не смежных с ним.
∠ОВК = 140° - 110° = 30°

ΔВМС: ∠ВМС = 90°, ∠МВС = 30°, ⇒ ∠ВСМ = 90° - 30° = 60° (сумма острых углов прямоугольного треугольника равна 90°)

Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠CDA = 180° - ∠BCD = 180° - 60° = 120°

Противолежащие углы параллелограмма равны.
ответ: 60°, 60°, 120°, 120°
girra
Сделаем рисунок.
Так как окружность пересекает продолжения сторон АС и ВС,  а точки N и М лежат на ней, углы DNЕ и DМЕ, опирающиеся на диаметр DE,  - прямые, а угол DСЕ , вершина С которого находится внутри окружности, тупой.
Поскольку точки D и Е - середины сторон АС и ВС, отрезок DЕ - средняя линия треугольника АВС и равен половине АВ
DЕ=АВ:2=7
DС= АС:2=3
СЕ=ВС:2=5
Найдем величину угла DСЕ по т. косинусов. Вычисления давать не буду, ничего сложного в них нет.
Главное, что   найденный в результате косинус угла DСВ равен - 0,5, и это косинус 120°.
Угол ЕСN, как смежный с углом ЕСD, равен 60°.
Т.к. треугольник ЕСN прямоугольный, угол СЕN равен 90°-60°=30°.
На том же основании угол СDМ =30°
Оба эти угла  опираются на дугу МN.
На ту же дугу опирается центральный угол МОN.
Центральный угол, опирающийся на ту же дугу, что и вписанный, вдвое больше него, ⇒ угол МОN=60°.
Угол ЕСN - внешний угол при вершине С треугольника DЕС.
Он равен 60°,
сумма углов ЕDС и DЕС равна этому внешнему углу и равна 60°.
Сумма половин углов СЕN и СDМ равна 2*(30°:2)=30°. Следовательно, сумма углов ЕDК+КЕD равна 60°+30°=90°.
Отсюда угол DКЕ равен 180°-90°=90°
Треугольник DKE- прямоугольный, две его вершины лежат на окружности, а половина гипотенузы - радиус этой окружности.
Следовательно, этот треугольник вписан в окружность, и К, точка пересечения биссектрис углов МЕNи NDМ, лежит на этой окружности, что и требовалось доказать. 
——
Треугольник МОN - равноберенный, т.к. ОМ=ОN= радиусу.
Если угол при вершине равнобедренного треугольника равен 60°, этот треугольник - равносторонний.
МN равна радиусу окружности, т.е. равна половине ее диаметра DЕ
МN=7:2=3,5 
------
[email protected]
Точки d и e - середины сторон соответственно ас и вс треугольника авс. на отрезке de как на диаметре

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дан прямоугольный треугольник ABC с координатами вершин A(X2; Y2), B(X2; Y1), C(X1; Y1) в прямоугольной системе координат. При этом X1 < X2, а Y1 < Y2. Определите координаты вершин A и C, если этот треугольник повернут на 90 градусов против часовой стрелки относительно вершины B (т. е. координаты вершины B не изменились
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

roman-fetisov2005
vaskravchuck
Makarov
Kochetova92
сергеевич1958
ooost-2022
Павловна1750
Zhanibekrva Kandaurova
achernakov
dashakhmeleva6
ivanovk3599
angelinaugan119
elenaneretina
rakitinat8
KseniGum9