сумма смежных углов=180°
Объяснение:
На рисунке изображена пара смежных углов KSP и HSP. У них сторона SP является общей, а у сторон KS и HS есть общая точка S и они расположены на одной прямой.
Относительно смежных углов рассмотрим основную теорему, согласно которой:
Сумма смежных углов равна 180 градусов.
Доказывается теорема очень легко и просто.
Доказ-во.
Согласно рисунка стороны KS и HS расположены на одной прямой, то есть углы KSP и HSP создают развернутый угол, значение которого в градусах равно 180 градусов. Математически это запишется так:
угол KSP + угол HSP = 180 град.
Теорема доказана.
Из данной теоремы существует следствие:
Из равенства двух углов вытекает равенство смежных к ним углов.
Интересно заметить, что когда пересекаются две прямые, то в результате образуется 4 пары смежных углов.
Рассмотрим рисунок, на котором каждый угол обозначен соответствующей цифрой.
Первая пара – углы 1 и 2
Вторая пара – углы 2 и 4
Третья пара – углы 4 и 3
Четвертая пара – углы 3 и 1
Принято рассматривать только одну из всех этих пар, поскольку углы 1 и 4, а также углы 2 и 3 равны как вертикальные.
Поделитесь своими знаниями, ответьте на вопрос:
У треугольника ABC угол С 90 градусов , А 15 градусов , сторона BC = 11 см на сторона АС поставили точку М так что угол ВМС = 30 градусов Нужно найти АМ
Объяснение:
Якщо пряма не паралельна площині , то вони перетинаються в одній точці. Щоб знайти точку перетину необхідно розв’язати систему їх рівнянь
Це зручніше зробити, якщо рівняння записати в параметричній формі
і підставити ці вирази в рівняння , тоді одержимо
За знайденим значенням із (34) знаходимо координати точки перетину.
Приклади
1.Знайти точку перетину прямої з площиною .
Розв’язання.Запишемо рівняння прямої в параметричному вигляді: Підставимо вирази для x, y, z в загальне рівняння площини
2.Знайти точку N симетричну з точкою М(-1,4,2) відносно площини
Розв’язання.Спочатку складемо рівняння прямої, яка проходить через точку М(-1,4,2) перпендикулярно до площини. За напрямний вектор можна взяти нормальний вектор даної площини (див. умову (33) попереднього параграфа ). Отже, маємо Знайдемо точку перетину знайденої прямої з площиною. З рівняння прямої виражаємо і підставляємо у рівняння площини точка перетину прямої і площини. Ця точка є серединою між двома симетричними відносно площини точками М(-1,4,2) і N(XN, YN, ZN), тобто
Хз что ето