Лилин1079
?>

Найдите площадь поверхности прямоугольного параллеле- пипеда, если его длина, ширина и высота соответственноравны 3 см, 4 см и 5 см, а площадь прямоугольника состоронами а и b находится по формуле S = ab.​

Геометрия

Ответы

Bsn1704

ответ:94 см²

Объяснение:2*(а*b+a*c+b*c)=2*(3*4+3*5+4*5)=47*2=94/см²/

olgaprevisokova302

Рассмотрим треуг-ик АВС. Угол В - также прямой в прямоугольной трапеции. Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, найдем угол АСВ:

<ACB=90-<BAC=90-45=45°

Значит, прямоугольный треуг-ик АВС - равнобедренный, т.к. углы при его основании АС равны.

АВ=ВС

Рассмотрим треуг-ик ACD:

<ACD=<BCD-<ACB=135-45=90°

<CAD=<BAD-45=90-45=45°

<ADC=90-<CAD=90-45=45°

Таким образом, прямоугольный треуг-ик ACD - равнобедренный с равными углами при основании AD. Построим высоту трапеции СН, которая будет равна короткой стороне АВ и разделит ACD на два равных прямоугольных треугольника АНС и DHC. В равнобедренном треуг-ке высота, проведенная к основанию, является также и медианой, значит

АН=DH=30:2=15 см

В прямоугольных равных треугольниках АНС и DHC углы АСН и DCH равны также по 45 градусов (90-45=45°). Это тоже равнобедренные треугольники, где

АН=DH=CH=15 см. Значит, и АВ=15 см

Имеется три равных прямоугольных равнобедренных треугольника АВС, АНС и DHC с равными катетами по 15 см.

Объяснение:


В прямоугольной трапеции ABCD ∠BAD прямой, ∠BAC=45°, ∠BCD=135°, AD=30 см. a) Найдите меньшую боковую
bsi771184

По условию четыре данные прямые параллельны, отсекают на прямой ЕН отрезки, равные длине отрезка ЕF, т.е. 6 см.

Значит, ЕН=3•6=18 см

CD=CB=AB=4, и AD=3•4=12 см

Проведем параллельно AD прямую ЕМ, пересекающую параллельные прямые СF и BG в точках Т и К соответственно.

СТ=ВК=АМ=DE=51 см.

ТF=CF-51=57-51=6 см,

Соответственные углы при пересечении параллельных прямых секущими равны (свойство), ⇒

∆ ТЕF, ∆ KEG и ∆ МЕН подобны;

TF - средняя линия ∆ КЕG ⇒ KG=2•TF=12 см

BG=51+12=63 см

КT=КМ=ТЕ=4

У подобных ∆ ТЕF и ∆ МEН k=EH:EF=18:6=3⇒

MH=6•3=18 см

Итак, АD=3•4=12 см,

EH=18 см

DE=51; CF=57 см

AH=51+18=69 см

Нужно металлических прутьев

12+18+57+63+69+51=30+120+120=270 cм =2,7 м

ответ:2,7 м.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите площадь поверхности прямоугольного параллеле- пипеда, если его длина, ширина и высота соответственноравны 3 см, 4 см и 5 см, а площадь прямоугольника состоронами а и b находится по формуле S = ab.​
Ваше имя (никнейм)*
Email*
Комментарий*