ответ: 60*, 120*, 120* 60*.
Объяснение:
Сумма углов в четырехугольнике равна (n-2)*180=(4-2)*180*=2*180*=360*.
Обозначим трапецию через ABCD, где AB=BC=СD (по условию).
∠BAC=∠BCA, т.к. треугольник ABC - равнобедренный.
∠CAD=∠ACB, как накрест лежащие при BC║AD и секущей CD.
Обозначим ∠BAC=∠BCA=CAD через х. Тогда ∠ADC=2x, так как АС является биссектрисой угла BAD.
Cосотавим уравнение:
2х+2х+90*+х+90*+х=360*.
6х=360*-180*;
6х=180*;
х=30*;
Тогда ∠BAD=2*30*=60*;
∠ABC=90*+30*=120*;
∠BCD=∠ABC=120*;
∠CDA=∠BAD=60*.
Проверим:
60*+120*+120*+60*=360*.
Поделитесь своими знаниями, ответьте на вопрос:
Обґрунтуйте і дайте пояснення до питання: "Що не можуть мати три різні площини: рівно одну спільну точку; не менш ніж дві спільні точки; більше, ніж чотири спільні точки, рівно три спільні точки."
Подробно.
Площадь основания a^2; диагональ основания a*корень(2). Это - основание треугольника, который - диагональное сечение. Треугольник этот равнобедренный (боковые стороны - ребра пирамиды). Высота этого треугольника, проведенная к основанию - это высота пирамиды. Обозначим ее Н.
Получаем а^2 = Н*a*корень(2)/2; получается, что Н тоже равно a*корень(2).
Теперь надо найти апофемы боковых граней.
Выберем какую-то сторону основания и проведем в боковой грани, её содержащей, апофему. Проекция этой апофемы перпендикулярна этой стороне, потому что лежит в плоскости, которая перпендикулярна этой стороне - а именно, плоскости, в которой лежат апофема и высота пирамиды (каждая из этих прямых перпендикулярна этой стороне). Следовательно, апофема является гипотенузой в прямоугольном треугольнике, образованной высотой пирамиды и отрезком, выходящим из центра квадрата в основании и препендикулярным стороне. Такой отрезок, очевидно, равен а/2. Легко сосчитать, что апофема m равна
m = a*корень(2 + 1/4) = a*корень(9/4) = а*3/2.
Площадь боковой грани составит m*a/2 = a^2*3/4, всего боковых граней 4.
ответ. Боковая поверхность равна 3*a^2