1) S = 1/6
2) S = 1/2
3) S = 5/9
Объяснение:
Площадь треугольника можно вычислить по следующей формуле:
1) Обозначим площадь закрашенного ∆-ка S1 (см. рис.1)
Очевидно, т.к. точки делят стороны "единичного" ∆ка на равные отрезки, а угол у единичного и у малого треугольника общий, то
и площадь S1 равна
А т.к.
2) Пусть площадь закрашенной фигуры (а это - треугольник, см. рис.) равна S1.
Тогда площадь исходного единичного треугольника будет равна:
площадь S1, плюс общая площадь трех незакрашенных треугольников (обозначим их площади S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:
Треугольники 2, 3, 4 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:
Соответственно, искомая площадь составляет
3) Пусть площадь закрашенной фигуры (а это - шестиугольник, см. рис.) равна S1
Тогда площадь исходного единичного треугольника будет равна:
площадь S1, плюс общая площадь трех незакрашенных треугольников (пусть их площади будут S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:
Площади треугольников 2, 3 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:
Но площадь треугольника 4 меньше: у него две стороны втрое меньше чем у исходного единичного, потому его площадь равна:
Следовательно, общая площадь незакрашенных частей равна:
А искомая площадь закрашенной фигуры S1 составляет
Поделитесь своими знаниями, ответьте на вопрос:
Поясніть, чому стіл, який має три ніжки, обов'язково стійкий, а про стіл із чотирма ніжками цього стверджувати не можна.о. (Жарт.) Три мухи одноча
Даны точка P(-1;-2;2) и прямая (x/2)=(y/-2)=((z-2)/3).
Из уравнения прямой получим:
s = 2; -2; 3 - направляющий вектор прямой;
M1 = 0; 0; 2 - точка лежащая на прямой.
Находим вектор РМ1.
РM1 = {M1x - Рx; M1y - Рy; M1z - Рz} = 0 - (-1); 0 - (-2); 2 - 2 = 1; 2; 0
Площадь параллелограмма лежащего на двух векторах РM1 и s:
S = |РM1 × s|
РM1 × s = i j k
1 2 0
2 -2 3 =
= i (2·3 - 0·(-2)) - j (1·3 - 0·2) + k (1·(-2) - 2·2) =
= i (6 – 0) - j (3 – 0) + k (-2 – 4) =
= 6; -3; -6.
Зная площадь параллелограмма и длину стороны найдем высоту (расстояние от точки до прямой):
d = |РM1×s||s| = √(6² + (-3)² + (-6)²)/√(2² + (-2)² +3²) = √81/√17 = √(81/17) = 9√17/17 ≈ 2,18282.