1. BC=6
трегольник NAD подобен ВАС(т.к. угол А общий, и там ещё равны углы по 90 градусов и это первый признак подобия)
и соудуя из этого АС/АD=10/5=2
и так как ND подобна СВ а коэффициент подобия 2, то 3×2=6
2. ответ 4
ну те же самые треугольники подобные и точно по таким же признакам.
АN подобно АВ и коэффициент подобия это 1/2 (ND/CB=3/6)
1/2×8=4
3.ответ 10
все то же самое что и в предыдущих двух.
надо сложить стороны АD +DB=5+3=8
AB/AN=2
AC=2×AD=10
4. ну сдесь по аналогии, не плохо было бы и самому разобраться, ответ 3
Решение
Предположим, что каждая из сторон четырёхугольника ABCD меньше √2/2 Тогда квадрат длины каждой стороны меньше 1/2. Среди четырёх углов, образованных пересекающимися прямыми AB и CD, есть два неострых угла. Рассмотрим стороны четырёхугольника, расположенные в этих неострых углах. Сумма квадратов их длин меньше 1. Квадрат длины стороны треугольника, лежащей против неострого угла, не меньше суммы квадратов длин двух других сторон треугольника. Поэтому сумма квадратов длин четырёх отрезков, на которые делятся отрезки AB и CD точкой пересечения, меньше 1. С другой стороны, каждый из этих отрезков делится точкой пересечения на два отрезка, сумма квадратов длин которых не меньше 1/2 поскольку x^2 + (1 - x)^2 = 2(x - 1/2)^2+1/2>=1/2Получено противоречие.
Поделитесь своими знаниями, ответьте на вопрос:
Периметр треугольника равен 4 а радиус вписанной окружности равен 1/3 найдите его площадь
радиус вписанной в произвольный треугольник окружности равен отношению его площади к полупериметру. r=s/p p- полупериметр, у нас p=p/2=4/2=2
r=s/p отсюда s=r*p=1/3*2=2/3