См. Объяснение.
Объяснение:
Дано: KCl0₃ (хлорат калия, или бертолетова соль).
Задача 1.
Вычислите массовые доли химических элементов, входящих в состав хлората калия.
Решение.
1) Относительная молекулярная масса хлората калия:
39 + 35,5 + 3· 16 = 39 +35,5+48 = 122,5.
2) Массовая доля калия - это выраженное в процентах отношение его относительной атомной массы (39) к относительной молекулярной массе хлората калия:
39 : 122,5 · 100 = 31,84 %.
3) Массовая доля хлора - это выраженное в процентах отношение его относительной атомной массы (35,5) к относительной молекулярной массе хлората калия:
35,5 : 122,5 · 100 = 28,98 %.
4) Массовая доля кислорода- это выраженное в процентах отношение относительной атомной массы 3-х атомов кислорода (3·16=48) к относительной молекулярной массе хлората калия:
48 : 122,5 · 100 = 39,18 %.
Проверка:
31,84 + 28,98 + 39,18 = 100,00 %.
Задача 2.
Определите химическую формулу вещества и назовите это вещество, если известно, что в состав данного вещества входят 3 химических элемента, массовые доли которых составляют:
калия - 31,84 %,
хлора - 28,98 %,
кислорода - 39,18 %.
Решение.
1) Пусть в искомой формуле вещества:
а - количество атомов калия,
b - количества атомов хлора,
с - количество атомов кислорода.
2) Тогда относительная молекулярная масса (М) искомого вещества, выраженная через относительную атомную массу калия (39) и его массовую долю (0,3184), равна:
М = (39·а)/0,3184. (1)
Аналогично М можно выразить через хлор и кислород:
М = (35,5·b)/0,2898. (2)
М = (16·c)/0,3918. (3)
3) Приравнивая (1) и (2), находим :
11,3022а =11,3032b,
откуда а = b.
4) Приравнивая (1) и (3), находим:
15,2802а = 5,0944 с,
откуда с = 3а.
5) Таким образом, предполагаемая формула:
KCl0₃.
6) Делаем проверку (см. Задачу 1) и убеждаемся в том, что формула определена верно.
7) Делаем вывод:
формула искомого вещества - KCl0₃;
наименование вещества (согласно "Химической энциклопедии") - хлорат калия, или бертолетова соль.
Поделитесь своими знаниями, ответьте на вопрос:
решить только первый и пятый
В объяснении.
Объяснение:
1. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+3х+4х = 360° => х = 36°.
Больший угол равен 4х = 144°.
2. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+2х+4х = 360° => х = 40°.
Меньший угол равен 4х = 40°.
3. Площадь квадрата равна площади прямоугольника: 4*9 = 36 =>
Сторона квадрата равна √36 = 6 ед.
4. Площадь прямоугольника равна х*(х+2) = 24. Тогда
х² + 2х - 24 = 0. Решаем квадратное уравнение. => x = 6. (второй корень отрицательный)
Тогда большая сторона равна 6 + 2 = 8 ед.
5. Смотри рисунок.
6. Уравнение окружности:
(Х - Хц)² + (Y-Yц)² = R² Тогда
а) Координаты центра: Ц(-5;2) Радиус = 4 ед.
б) Координаты центра: Ц(0;-3) Радиус = 3 ед.