У будь-якому трикутнику всі три його сторони і кут між двома з них мають властивість, яка виражається в теоремі косинусів:
Квадрат будь-якої сторони трикутника дорівнює сумі квадратів двох інших його сторін без подвоєного добутку цих сторін на косинус кута між ними.
Якщо в трикутнику три сторони позначити як a, b, c, і протилежні їм кути відповідно α, β, γ , то справедливими є співвідношення:
. . . З теореми косинусів випливає, що квадрат будь-якої сторони трикутника дорівнює сумі квадратів двох інших сторін плюс мінус подвоєний добуток однієї зі сторін на проекції другої сторони. Якщо протилежний кут гострий, то беремо знак мінус, якщо протилежний кут тупий, беремо знак плюс.
Якщо квадрат деякої сторони трикутника менший за суму квадратів двох інших сторін, то протилежний йому кут є гострим.
Якщо квадрат деякої сторони трикутника більший від суми квадратів двох інших сторін, то протилежний йому кут є тупим.
Якщо квадрат деякої сторони трикутника дорівнює сумі квадратів двох інших сторін, то протилежний йому кут є прямим.
З теореми косинусів випливає формула косинуса будь-якого кута трикутника:
Косинус деякого кута трикутника дорівнює відношенню суми квадратів сторін, прилеглих до цього кута без квадрата протилежної йому сторони до подвоєного добутку прилеглих до кута сторін.
За до теореми косинусів можна довести теорему про діагоналі паралелограма:
Сума квадратів діагоналей паралелограма дорівнює подвоєній сумі квадратів двох суміжних його сторін.
1) dОН—г (наклонная ОМ больше перпендикуляра ОН), л,
следовательно, точка М не лежит на окружности. Итак, если
расстояние от центра окружности до прямой равно радиусу
окружности, то прямая и окружность имеют только одну общую точку.
3) d>r. В этом случае ОН>г, поэтому для любой точки М
прямой р ОМ~^ОН>г (рис. 211, в). Следовательно, точка М не
лежит на окружности. Итак, если расстояние от центра
окружности до прямой больше радиуса окружности, то прямая и
окружность не* имеют общих точек.
69. Касательная к окружности. Мы доказали, что прямая и
окружность могут иметь одну или две общие точки и могут не
иметь ни одной общей точки. Прямая, имеющая с окружностью
только одну общую точку, называется касательной к окружности,
а их общая точка называется точкой касания прямой и
окружности. На рисунке 212 прямая р — касательная к окружности с
центром О, А — точка касания.
Докажем теорему о свойстве касательной.
Теорема. Касательная к окружности перпендикулярна
к радиусу, проведенному в точку касания.
Доказательство. Пусть р — касательная к окружности
Поделитесь своими знаниями, ответьте на вопрос:
Тіктөртбұрыштың периметрі 48 см. Оның қабырғалары- ның қатынасы 1:2 қатынасындай. Қабырғаларының ұзындықта-рын табыңдар. ә) ABCD тіктөртбұрышының 4 бұрышының бис-сектрисасы ВС қабырғасын 2 см және 6 см бөліктерге бөледі.Тіктөртбұрыштың периметрін табыңдар. б) Тіктөртбұрыштың кі-ші қабырғасының оның диагоналіне қатынасы 1:2 қатынасын-дай. Диагональдардың қиылысуынан пайда болған кiшi бұрыштытабыңдар.
1) ұзындығы болады x содан кейін ені 2x. (2x+x) * 2=6x осыдан x=8см
2) биссектрисаны жүргізгеннен кейін бұрыш 90 градус болатын үшбұрыш пайда болды, негізі 45 градус болатын бұрыштар. сонымен Үшбұрыш изоссельдер ⇒ ав=6.
Р= (6+8)*2=28
Объяснение: