Треугольник EKL равносторонний, его стороны
a^2 = 1^2 + (1/2)^2 + (1/2)^2 = 3/2; a = √(3/2);
KM = a*3/5; KN = a*4/5; cos(∠MKN) = cos(60°) = 1/2;
По теореме косинусов
MN^2 = (a*3/5)^2 + (a*4/5)^2 - (a*3/5)*(a*4/5) = a^2*13/25;
MN = a*√13/5 = √78/10;
В одном из комментариев комментарии я упоминаю, что можно так повернуть куб, чтобы точки E K L циклически поменялись местами E -> K; K -> L; L -> E; и можно сделать это повторно :) . Именно это является главным обоснованием того, что EKL - равносторонний треугольник.
Поделитесь своими знаниями, ответьте на вопрос:
ABCD - прямоугольник. найдите угол x.
Дано: прямая а, точка А, принадлежащая прямой.
1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а.
Доказательство:
А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.
Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а.