Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
Borisovich-Volobueva1803
10.04.2021
Угол GMB и угол GMN смежные, те их сумма равна 180гр, находим угол GMN = 180-уголGMB = 180-84=96гр
Сумма углов треугольника равна 180гр. К тому же угол MGN равен 1/2 угла МNG, тк это равнобедренный треугольник, а GM является биссектрисой. Таким образом мы можем записать, что 180=уголGMN+уголMNG+1/2углаMNG
соsА = 3/5 = 0,6
Объяснение:
оскільки косинус це відношення прилеглого катета до гіпотенузи, а в Δ АВС АС - прилеглий катет до кута А, АВ - гіпотенуза, то соsА = АС/АВ.
АВ² = АС² + ВС²; АВ² = 81 + 144 = 225, тодв АВ = 15.
соsА = 9/15 = 3/5