Объяснение:
Тангенс угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
а)
tg∠A = BC / AC = 3/6 = 1/2
ctg∠A = AC / BC = 6/3 = 2
б)
tg∠B = AC / BC = 4/6 = 2/3
ctg∠B = BC / AC = 6/4 = 3/2
№2
Тангенс угла в прямоугольном треугольнике -это отношение противолежащего катета к прилежащему. Проведём дополнительные прямые линии так, чтобы получить прямоугольные треугольники, из которых можно будет найти катеты необходимых углов и воспользуемся формулами тангенса суммы и разности углов.
tg(a-β)=tga-tgβ/1+tga×tgβ; tg(a+β)= tga+tgβ/1-tga×tgβ
a)tg ∠BAC = tg(∠BAD-∠CAD) =tg∠BAD- tg-∠CAD/1+tg∠BAD×tg∠CAD=∠BAD= BK/AK=5/5=1; tg∠CAD= CD/AD=3/6=1/2=1-1/2/1+1×1/2=1/2/3/2=1/3
ctg∠BAD=1/tg∠BAD=1/1/3
b) tg∠ABC=tg(∠CBD+∠KBA) =tg∠CBD+tg∠KBA/1-tg∠CBD×tg∠KBA=tg∠CBD=CD/BD=1/3; tg∠KBA=AK/BK=5/5=1=1/3+1/1-1×1/3=4/3/2/3=4/2=2
1) Назови треугольники, равенство которых позволит доказать равенство ΔAFD и ΔCFE: ΔBAE = Δ BCD.
По какому признаку доказывается это равенство
ПО-ВТОРОМУ
2. Величина угла, под которым перпендикуляр CD пересекает BA — 34
2)Отметь элементы, равенство которых в этих треугольниках позволяет применять выбранный признак:
Углы: CBD=ABE, EAB=DCB,
Стороны: BС=BA
По какому признаку доказывается равенство ΔAFD и ΔCFE - ВТОРОМУ
Отметь элементы, равенство которых в треугольниках ΔAFD и ΔCFE позволяет применять выбранный признак:
FAD=FCE, ADF=CEF, AD=EC
Поделитесь своими знаниями, ответьте на вопрос:
Хотя бы Первое задание( 1.1, 1.2)
В тетраэдре АВСD построить сечение
Объяснение: