natkul22
?>

Сумма расстояние от центра сферы до 4 точек на поверхности равна 24 см найдите диаметр сферы

Геометрия

Ответы

Чунихина1586
Диаметр сферы 100 см
Elshel8694

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.  Доказательство.Обратимся к рисунку, на котором АВС — равнобедренный треугольник с основанием ВС, АD — его биссектриса.Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников:AD-общая;углы 1 и 2 равны т.к. AD-биссектриса;AB=AC,т.к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D — середина стороны ВС и поэтому АD — медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. Теорема доказана.   В равнобедренном треугольнике углы при основании равны.   В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой     Если в треугольнике два угла равны, то он равнобедренный.  Если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.


, 7 класс, выполните с доказательством и рисунками
pechatlogo4

В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны.

Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его медианы. Тогда треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, стороны AL и BK равны как половины боковых сторон равнобедренного треугольника, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB равны. Но AK и LB - медианы равнобедренного треугольника, проведённые к его боковым сторонам.


, 7 класс, выполните с доказательством и рисунками

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сумма расстояние от центра сферы до 4 точек на поверхности равна 24 см найдите диаметр сферы
Ваше имя (никнейм)*
Email*
Комментарий*