Так... Заранее извиняюсь, если что-то будет повторяться и смешиваться. Печатаю и решаю одновременно просто... Предположим что у тебя пирамида КАВС(К - вершина). Раз она правильная то все боковые треугольники равнобедренные, а в основании равносторонний. Рассматриваешь треугольник КОА(О - центр основания). Он прямоугольный. tg30=KO/AO, следовательно АО=КО/tg30. В основании лежит равносторонний треугольник. О - точка пересечения медиан, высот и биссектрисс(в принципе это одни и те же линии). Делятся они в отношении 2 к 1 считая от вершины(тоесть наше АО это 2 части медианы, в целом она же будет равна АО*3/2). Далее из треугольника АМВ находим АВ(М - середина ВС). АВ=АМ/sin60 (в основании равносторонний значит все углы по 60). Далее находим площадь основания, она равна половине основания умноженого на высоту (1/2*АМ*АВ). Объем равен одной трети произведения площади основания на высоту (1/3*площадь основания*ОК). Теперь будем искать площадь!) Площадь основания мы уже нашли. Теперь ищем площадь боковой поверхности(там три одинаковых треугольника, поэтому найдем площадь одного и умножим на три). Тоже будем искать через формулу площади треугольника - половина онования на высоту. АВ мы уже нашли, ищем высоту. Через треугольник КОА ищем боковую сторону(АК=КО/sin30). По теореме пифагора найдем МК. МК=корень(АК^2-АМ^2). АМ=1/2*АВ. Ну дальше боковая площадь равна 3*1/2*АВ*КМ. И вся площадь поверхности равна этой площади + площадь основания. Должно быть правильно, но по ходу решения лучше перепроверяй.
Смотри, площадь боковой поверхности треугольной пирамиды - это три треугольника. При условии что пирамида правильная, значит треугольники равнобедренные. Сначала найдем площадь одного треугольника(боковую площадь дели на три). SP - медиана, а соответственно биссектриса и высота треугольника SAB(т.к. он равнобедренный). Площадь треугольника равна половине основания умноженного на высоту. Выражаешь из этого основание, все остальное тебе дано(Короче находишь AB). В основании правильной пирамиды лежит правильный треугольник(равносторонний). Значит AB=BC=AC=тому что ты там насчитаешь. Вроде как то так...
Поделитесь своими знаниями, ответьте на вопрос:
в равнобедренной трапеции высота проведённая из вершины тупого угла делит большее основание на отрезки 3 см и 17 см Найдите основание трапеции
Опустим высоты BE и CF на большее основание.
В равнобедренной трапеции боковые стороны равны (AB=CD), углы при основаниях равны (A=D).
Треугольники ABE и DCF равны по острому углу и гипотенузе.
AE=DF =3 (см)
BE||CF (перпендикуляры к одной прямой), BC||AD (основания трапеции)
EBCF - параллелограмм (т.к. противоположные стороны параллельны)
BC =EF =ED-DF =17-3 =14 (см)