bd201188
?>

У рівнобедреному трикутнику ABC кут B = 100°. Усередині трикутника взята така точка M, що кут MAB дорівнює 10°, кут ABK = 20°. Знайдіть кут BMC.

Геометрия

Ответы

Шеина
В основании правильной 4-уг. пирамиды лежит квадрат, так как боковое ребро образует угол в 45 градусов, то мы получаем равнобедренный прямоугольный треугольник, в котором высота и 1/2 диагонали квадрата катеты, а боковое ребро -гипотенуза , по теореме пифагора находим катеты (а), они у нас равны между собой и равны а^2+а^2=4^2     2а^2=16    а^=8 а=2V2см  - это мы нашли высоту площадь боковой поверхности пирамиды равна 4  площадям боковых граней, сторона квадрата (b в квадрате), лежащего в основании  равна 2а в квадрате (по теореме пифагора) b^2=2а^2=2*(2V2)^2     b=4см  найдем апофему (с) с^2=4^2-(b/2)^2=16-4=12  с=V12  c=2V3 cмS=4*(1/2)*b*c=2*4*2V3=16V3 кв.см
kolgatin69
1) В прямоугольном треугольнике АВС <C=90°, <B=60° и <A=30° (90°-60°). Найти надо катет АС (против <60°). Тогда гипотенуза АВ=2*СВ (катет СВ лежит против угла 30°).  По Пифагору АС=√(4СВ²-СВ²)=СВ√3. Площадь тр-ка АВС = (1/2)* АС*СВ = СВ²√3/2 = 50√3/3. Отсюда СВ²=50*2/3, а СВ = √(100/3)=10/√3. Но АС=СВ√3 (смотри выше). Мтак, искомый катет АС = (10/√3)*√3 = 10.
2) Касательные к окружности с центром 0 в точках A и B пересекаются под углом 72 градуса. найдите угол ABO. То есть касательные пересекаются под углом 72° (предположим, в точке С). Точки касания - А и В. Центр О. Значит в четырехугольнике ОАСВ угол АОВ=108°. Треугольник ОАВ равнобедренный, так как АО и ВО - радиусы. Тогда исклмый угол АВО = (180°-108°):2 = 36°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

У рівнобедреному трикутнику ABC кут B = 100°. Усередині трикутника взята така точка M, що кут MAB дорівнює 10°, кут ABK = 20°. Знайдіть кут BMC.
Ваше имя (никнейм)*
Email*
Комментарий*