v79150101401
?>

В Выпуклом четырёхугольнике ABCD известно что угол ADC =60* и AB=AD=DC. Найдите угол ABD, если угол ВСА = 55

Геометрия

Ответы

vasilevam

Возможно 65 градусов, я хз

sv455umarketing74

Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.  

Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .

В треугольнике на рисунке приложения 

Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу. 

BC²=АВ•НВ

900=АВ•18

АВ=900:18=50 см

Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:

АН:АС=АС:АВ

АН=50-18=32

32:АС=АС:50 ⇒  АС²=32•50   

 АС=√1600=40 см

-----------

Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых  3:4:5.


Катет прямоугольного треугольника равен 30 см а его проекция на гипотенузу 18 см. найти гипотенузу и
dimaproh
Пусть BB' медиана стороны AC, тогда B'C=B'A=CA/2, откуда CA=2*B'C(1)По свойству медиан треугольника имеем:   OB/OB' =2/1, или OB=2*OB', откуда OB'=OB/2 =10/2=5  где OB=10 по условию  Тогда BB'=OB+OB'=10+5=15Из прямоугольного треугольника B'CB по теореме Пифагора найдем  B'C = корень[(BB'^2)-(BC^2)]=корень[225-81]=корень[144]=12 где BC=9 по условию   Подставим в (1) вместо B'C его значение, найдем CA:     CA=2*12=24И, наконец, найдем искомую площадь S треугольника ABC:      S=CA*BC/2=24*9/2=12*9=108

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

В Выпуклом четырёхугольнике ABCD известно что угол ADC =60* и AB=AD=DC. Найдите угол ABD, если угол ВСА = 55
Ваше имя (никнейм)*
Email*
Комментарий*