Поделитесь своими знаниями, ответьте на вопрос:
На основании АС равнобедренного треугольника АВС отмечена точка D так, что AD=AB. В треугольнике провели биссектрису AL(точка L лежит на отрезке BC) Найдите градусную меру угла BCA, если DC=CL. ответ дайте в градусах
В условии не указано, AD=5 (нельзя обозначать строчными буквами "ad") короткая или длинная сторона прямоугольника, поэтому в задаче возможны два варианта.
Если 5 равен короткий катет , то гипотенуза равна 10, а площадь основания 5*5*√(3)=25*√(3). В прямоугольных треугольниках, образованных высотой пирамиды, боковым ребром, и проекцией бокового ребра (половинкой гипотенузы) высоту определяем по Пифагору: h=√13^2-5^2)=12. Тогда объем равен
V=(1/3)*12*25*√(3)=100*√(3).
Если 5 равен длинный катет, то короткий катет 5/√(3), гипотенуза 10/√(3), площадь основания (5/√(3))*(10/√(3))=50/3. Высота пирамиды равна
h=√(13^2- (5/√(3))^2)=√(482/3), а объем V=(1/3)*100*√(3)*√(482/3)=(100/3)√(482).
ответ "некрасивый", наверное все же первый вариант, но в условии что-то пропущено.