Рисунок во вложении, хотя можно вполне обойтись без него.
1) Найдем вторую сторону основания параллелепипеда из формулы площади основания. Т.к. он прямоугольный, основание - прямоугольник.
S=a*8=40
а=S:8=40:8=5 см
2) Найдем высоту параллелепипеда из формулы объема.
V=S·h
h=V:S
h=240:40=6cм
Площадь боковой поверхности равна произведению высоты на периметр основания:
Sбок=h·2(a+b)
Sбок=6·2·(8+5)=156 см²
Площадь полной поверхности параллелепипеда равна сумме площадей двух его оснований и боковой поверхности:
Sполн= 2·Sосн +Sбок
Sполн=80+156=236 см²
Диагональ можно найти с теоремы Пифагора ( см. рисунок)
Для этого нужно сначала вычислить диагональ основания АС.
Диагональ АС1 параллелепипеда равна
АС1=√(АС²+С1С²)
Можно воспользоваться теоремой:
Квадрат диагонали параллепипеда равен сумме квадратов трех его линейных измерений.
АС1²=АВ²+ВС²+С1С²=8²+5²+6²=125
АС1=√125=5√5 см
-----------------------------------------
№2
Объем прямоугольного параллелепипеда равен произведению высоты на площадь его основания или произведению трех его измерений. Что одно и то же.
V=a·b·c
Об основании известно, что его периметр Р равен 40 см.
Р=2(а+b)
Ни а, ни b не известны, но их длину можно найти.
Пусть ширина основания а, тогда его длина ( по условию) а+4
40=2·(а+а+4)=2а+2а+8=4а+8
4а=40-8=32 см
а=8 см
b=8+4=12 см
Высоту найдем из площади боковой поверхности, которая равна произведению высоты на периметр основания:
Sбок=hP
h=Sбок:Р
h=400:40=10 см
V=a·b·c=8·12·10=960 см³
Поделитесь своими знаниями, ответьте на вопрос:
В выпуклом четырехугольнике АВСД известно, что Угол АДС=60⁰ и АВ=АД=ДС.Найдите Угол АВД, если Угол ВСА=55⁰.ответ дайте в градусах.
Мера двугранного угла равна 60°.
Объяснение:
Определение: Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Пусть дана точка Q на одной из граней двугранного угла. Опустим перпендикуляр QР на ребро АВ этого угла и перпендикуляр QH на вторую грань. Соединим точки Н и Р.
НР перпендикулярна прямой АВ по теореме о трех перпендикулярах. Треугольник QHP - прямоугольный, а мерой двугранного угла является градусная мера угла QPH по определению. Косинус этого угла равен отношению прилежащего катета к гипотенузе, то есть Cos(<QPH) = QH/QP = 1/2 (так как QP = 2*QH по условию).
ответ: <QPH = arccos(1/2) = 60°.