Відрізок AB перетинає площину Через точки A, B і M - середину відрізка - проведено паралельні прямі, що перетинають площину у точках A1, B1 і M1 відповідно. Знайдіть MM1, якщо AA1=3см, BB1=17 см
Данный двугранный угол равен линейному SEO, где Е - середина стороны AD.
Квадрат со стороной 18 имеет диагональ 18 корней из 2, половина этой диагонали - отрезок ОА - равен 9 корней из 2. Из треугольника ASO находим:
SA = 18 корней из 2.
Поскольку в основании квадрат, то SA = SD, треугольник ASD равнобедренный с тремя известными нам сторонами: 18 корней из 2; 18 корней из 2; 18.
Высота, проведенная к основанию SE = 9 корней из 7.
Отрезок ОЕ = 18/2 = 9
Косинус угла SEO равен (корень из 7)/7
Искомый угол равен arccos√7/7.
boldireve617
14.10.2022
в ромбе ABCD два равных тупых угла (DAB, DCB) и два равных острых (ADC, ABC). Примите острый за х. AE -перпендикуляр из тупого угла к стороне DC, DE = EC. трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая) => в равных тр-ах против равных сторон лежат равные углы: ADE = ECA => ECA = ADC = ABC = x => DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса) сумма углов ромба равна 360 градусам => 2x + 2x +x + x = 360 ADC = ABC = x = 60 (острый угол ромба) DCB = DAB = 2х = 120 (тупой угол ромба).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Відрізок AB перетинає площину Через точки A, B і M - середину відрізка - проведено паралельні прямі, що перетинають площину у точках A1, B1 і M1 відповідно. Знайдіть MM1, якщо AA1=3см, BB1=17 см
Данный двугранный угол равен линейному SEO, где Е - середина стороны AD.
Квадрат со стороной 18 имеет диагональ 18 корней из 2, половина этой диагонали - отрезок ОА - равен 9 корней из 2. Из треугольника ASO находим:
SA = 18 корней из 2.
Поскольку в основании квадрат, то SA = SD, треугольник ASD равнобедренный с тремя известными нам сторонами: 18 корней из 2; 18 корней из 2; 18.
Высота, проведенная к основанию SE = 9 корней из 7.
Отрезок ОЕ = 18/2 = 9
Косинус угла SEO равен (корень из 7)/7
Искомый угол равен arccos√7/7.