В тетраэдре DАВС точки P,М,Q,N – середины ребер DВ, DС, АС, АВ соответственно. РQ =NM = 15cм, ВC = 18cм. Докажите, что NPMQ – прямоугольник. Найдите длину отрезка DА.
Объяснение:
1) ΔABD ,NP-средняя линия ⇒NP=1/2*AD и NP║AD;
2) ΔAСD ,MQ-средняя линия ⇒MQ=1/2*AD и MQ║AD; Получили NP=MQ и NP║MQ.
Учитывая 1 и 2 получаем, что MPNQ- параллелограмм , тк противоположные стороны равны и параллельны .Учитывая , что
РQ =NM (признак прямоугольника), получаем , что NPMQ – прямоугольник.
Отрезок DA=1/2*MQ по т. о средней линии треугольника. Отрезок MQ найдем из ΔАВС по т. о средней линии треугольника: MQ=1/2*ВС=1/2*18=9 (см).
ΔMQР-прямоугольный , по т. Пифагора MQ=√(15²-9²)=12(см)⇒DA=6 cм
5) ∠Q=∠M=∠N=180°:3=60° все стороны равны- Δ равносторонний и у него все углы равны по теореме о сумме трёх углов Δ
∠Q=∠M=∠N=180°:3=60°
6)∠E=90°;
∠P=90°-60°=30° по теореме о сумме острых углов прямоугольногоΔ.
7) MD=DN, ΔMDN- равносторонний,∠M и∠N- углы при основанииΔ
∠M=∠N=(180°-100°)/2=40°.
9) MN=NK, ΔMNK - равносторонний ∠M и∠K - углы при основанииΔ
∠M=180°-130°=50°; как смежный с внешним∠
∠M=∠K=50°;∠N=130°-∠K=80°.( как сумма двух углов против внешнего угла треугольника)
10)∠E=180°-140°=40°; как смежный с ∠CEF
∠D=180°-80°-40°=60° ( по теореме о сумме трёх углов).
11)∠C=90, ∠A=180°-150°=30°; ∠B=90-30°=60° по теореме о сумме острых углов прямоугольногоΔ.
Поделитесь своими знаниями, ответьте на вопрос:
Что означают квадраик в треугольнике ?вот такие :
я думаю,что они означают прямой угол.
Объяснение: