НУЖНО ДОКАЗАТЕЛЬСТВО Плоскость α проходит через вершины A и C треугольника ABC и точку N - середину стороны AB. Докажите, что центр окружности, вписанной в треугольник ABC, принадлежит плоскости α.
Искомая площадь состоит из трех равных площадей треугольников, у которых есть высота - апофема боковой грани, нужно найти сторону основания. И тогда площадь боковой поверхности равна 3а*L/2, где а - сторона основания. Если соединить основание апофемы и и высоты пирамиды, получим проекцию апофемы на плоскость основания, и она равна (1/3) высоты треугольника, лежащего в основании. Зная апофему и угол между апофемой и высотой, найдем эту проекцию. Она равна L*sinα=а√3/2, отсюда сторона основания а =2L*sinα/√3=
2L*sinα*√3/3
Значит, площадь боковой поверхности равна (3*2L*sinα*√3/3)*L/2=
L²*√3sinα/ед. кв./
KIRILLSHURYGIN98
14.12.2020
Решение: 1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500 25x^2=2500 x^2=100 x=-+10
-10 мы значение не берем по смыслу. Значит, x=10. Тогда 3х = 3*10 = 30(мм) 4х = 4*10 = 40(мм). 2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок: ac=a^2\c a - катет с - гипотенуза a с индексом с - отрезок. ac=900\50=18 А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм). ответ: 18 и 32 мм
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
НУЖНО ДОКАЗАТЕЛЬСТВО Плоскость α проходит через вершины A и C треугольника ABC и точку N - середину стороны AB. Докажите, что центр окружности, вписанной в треугольник ABC, принадлежит плоскости α.
Искомая площадь состоит из трех равных площадей треугольников, у которых есть высота - апофема боковой грани, нужно найти сторону основания. И тогда площадь боковой поверхности равна 3а*L/2, где а - сторона основания. Если соединить основание апофемы и и высоты пирамиды, получим проекцию апофемы на плоскость основания, и она равна (1/3) высоты треугольника, лежащего в основании. Зная апофему и угол между апофемой и высотой, найдем эту проекцию. Она равна L*sinα=а√3/2, отсюда сторона основания а =2L*sinα/√3=
2L*sinα*√3/3
Значит, площадь боковой поверхности равна (3*2L*sinα*√3/3)*L/2=
L²*√3sinα/ед. кв./