olgakovalsky6
?>

решить задачу номер 84, заранее

Геометрия

Ответы

Никита
1). Построим описанную окружность с центром в т. М
     Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
     что и угол ∠АВС.
     Следовательно:   ∠АМС = 2*∠АВС = 2*15 = 30°

     В ΔМНС:  CH = MC*sin30° = MC/2

     Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
                                           CH:AB = 1:4 

2). В ΔАВС:    cos∠ABC = BC/AB = BC/2MC  =>
                                        => BC = 2MC*cos15°
   
     В ΔМНС:   МН = МС*cos30° = MC*√3/2
                                  
Тогда:  \displaystyle MH:BC= \frac{2MC*cos15}{MC* \sqrt{3}/2}= \frac{4cos15}{ \sqrt{3}}= \frac{4 \sqrt{3}}{3}cos15

Впрямоугольном треугольнике abc угол b равен 15 градусов из вершины прямого угла c проведены высота
ilyxa08
У=2х=4х-12
-2х=-12
х=6 - точка пересечения двух линейных ф-ций
у=2х=2*6=12
Координата пересечения (6;12).

Построим первый график у=2х
х=0 у=0 => (0;0)
х=6 у=12 => (6;12)

Построим второй график у=4х-12
х=3 у=0 => (3;0)
х=6 у=12 => (6;12)

Третий график проходит по оси ох, ограничивая два линейных выше, которые пересеклись.

Фигура получилась - треугольник.

Найдем ее площадь как разницу площадей двух прямоугольных треугольников:

SΔAOB=SΔAOC-SΔABC=1/2*12*6-1/2*12*3=1/2(72-36)=1/2*36=18 см²

Можно найти иначе площадь фигуры, через интегралы:
\int\limits^6_0 {2x} \, dx - \int\limits^6_3 {(4x-12)} \, dx = x^{2}|\limits^6_0-(2 x^{2} -12x)\limits^6_3= \\ =36-0-(2*36-12*6-(2*9-12*3))= \\ =36-72+72+18-36=18

Получили такой же ответ: S=18 см²
Вычислите площади фигур , ограниченных следующими линиями: y=2x,y=4x-12,y=0

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить задачу номер 84, заранее
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rynaodal
DudukinSerega2507834
serge-lysoff
roman-fetisov2005
Alex17841
chumakanna17
girra
qwert28027170
olma-nn477
Потапова 79275136869323
elena-novikova-1992
Japancosmetica
kmalahov
shyroshka836103
gigbes