Dmitrii sergei463
?>

Отрезок MN длина которого 45см, разделён точкой О на два отрезка МО в ОN. Найдите эти отрезки если ON на 13 см больше, чем MO ​

Геометрия

Ответы

mposte
<ABD=180°-85°-30°=65°.
<B=<ABD+<CBD=65°+65°=130°
Треугольник АВС равнобедренный (АВ=ВС - дано), значит <BCA=<BAC=(180°-130°):2=25°
Итак, BО (О - точка пересечения диагоналей) в треугольнике АВС биссектриса, высота и медиана. Следовательно, диагональ BD перпендикулярна диагонали АС. Но если в треугольнике ADC DO - высота и медиана (АО=ОС - доказано выше), то он равнобедренный и <ACD=<CAD=60°, а <C=25°+60°=85°. Тогда <CDO=30° и <D=30°+30°=60°.
ответ: <A=85°, <B=130°, <C=85° и <D=60°
YuRII1236
1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О.
ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса.
ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС.
ΔАВО=ΔСВО , значит АВ=ВС=2,7 см.
Периметр равен 2(2,7+2,9)=2·5,6=11,2 см.
2) Обозначим длину сторон: х; х-8: х+8; 3(х-8).
По условию:
х+х-8+х+8+3(х-8)=66,
6х-24=66,
6х=90,
х=15.
Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см.
3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85°
Значит ∠АВD =180-85-30=65°.
∠АВС=∠АВD+∠СВD=65°+65°=130°.
Проведем другую диагональ АС.
ΔАВС по условию равнобедренный: АВ=ВС.
Значит углы при основании равны (180-130):2=25°.
∠САD=85-25=60°.
Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD.
Углы четырехугольника: 95°, 50°, 130°, 85°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Отрезок MN длина которого 45см, разделён точкой О на два отрезка МО в ОN. Найдите эти отрезки если ON на 13 см больше, чем MO ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

manager9
yaelenatu
Galina_Yurevna
Anton-Yurevich222
avn23
ievlevasnezhana7
Носов Тоноян
marat7
shutovaa3471
pavtrusov
Naumenkova-Ivanov
KosarinPotemkina1888
Елена Васильева839
Aleksandr556
dashafox8739