Дан треугольник с вершинами в точках А (4; 1), B (7; 5) и с (-4; 7).
Находим:
а) длину медианы, проведенной из вершины В;
Расчет длин сторон Квадрат
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = 5 25
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = 11,18033989 125
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = 10 100.
Как видим, треугольник прямоугольный.
Основания медиан (точки пересечения медиан со сторонами).
А₁(Ха1;Уа1) Хв+Хс Ув+Ус х у
2 2 А₁ 1,5 6
В₁(Хв1;Ув1) Ха+Хс Уа+Ус х у
2 2 В₁ 0 4
C₁(Хс1;Ус1) Ха+Хв Уа+Ув х у
2 2 С₁ 5,5 3.
Длины медиан:
АА₁ = √((Ха1-Ха)²+(Уа1-Уа)²)) = 5,590169944.
BB₁ = √((Хв1-Хв)²+(Ув1-Ув)²)) = 7,071067812.
CC₁ = √((Хc1-Хc)²+(Уc1-Уc)²)) = 10,30776406.
б) длину биссектрисы, проведенной из вершины А;
Длина биссектрисы:
АА₃ = √(АВ*АС*((АВ+АС)²-ВС²)) = 4,714045208
АВ+АС
в) координаты точки пересечения медиан это центр вписанной окружности;
Находим периметр: Р = 26,18034
Х =
ВС*Ха+АС*Хв+АВ*Хс = 3,618033989.
Р
Y =
ВС*Уа+АС*Yв+АВ*Ус = 3,673762079.
Р
г) косинус внутреннего угла при вершине С.
cos C= АC²+ВС²-АВ²
2*АC*ВС = 0,894427191
C = 0,463647609 радиан
C = 26,56505118 градусов
ответ: Н = √4,5 .
Объяснение:
S сф = 4πR² ; 1/2 S сф =27π ; 2πR² = 27π ; R² = 27π/ 2π = 13,5 ;
R сф = √13,5 ;
шуканий циліндр має певну висоту Н і радіус основи R₁ . Якщо твірна
циліндра АА₁ , то АА₁ = Н і R² = R₁² + H² ; R₁² = R² - H² = 13,5 - H² ;
Об"єм циліндра V = πR₁²H = π ( 13,5 - H²)*H = 13,5πH - πH³ ;
для зручності позначимо Н = х , тоді
V ( x ) = 13,5πx - πx³ ; xЄ [ 0 ; √13,5 ] ;
дослідимо функцію V ( x ) :
V '( x ) = 13,5π - 3πx² = 3π (4,5 - x² ) ;
V '( x ) = 0 ; 3π (4,5 - x² ) = 0 ; > x² = 4,5 ; x = √4,5 ( x > 0 ) .
V '( 1 ) > 0 ; V '( 3 ) < 0 ; тому х = Н = √4,5 - максимум .
отже , висота найбільшоб"ємного впис . циліндра Н = √4,5 .
Поделитесь своими знаниями, ответьте на вопрос:
І. діть його периметр.124. Сума довжин двох сторін ромба дорівнює 18 см. Знайдітьпериметр ромба.3
можна написати повність завдання?