Параллельно прямой АК проведём прямую СМ к стороне АД. СМ пересекает ВД в точке Е. Треугольники АВК и CДМ равны т.к. АВ=СД, ВК=ДМ и ∠В=∠Д. В них ∠АВР=∠СДЕ, значит ВР=ДЕ. Пусть одна часть в заданном отношении равна х, тогда ВР=ДЕ=2х, РД=3х, РЕ=РД-ДЕ=3х-2х=х. В тр-ке ВСЕ РК║СЕ, ВР:РЕ=2:1, значит ВК:СК=2:1 - это ответ 1.
Параллельно сторонам АД и ВС через точку Р проведём отрезок НО. Параллельно сторонам АВ и СД к прямой НО проведём отрезок КТ. НВКТ - параллелограмм. Его площадь равна двум площадям треугольника BPК т.к. у них одинаковая высота к стороне ВК. S(НBКТ)=2S(BРК)=2. Площадь параллелограмма ТКСО равна половине НВКТ т.к. КС=ВК/2. S(TKСО)=2/2=1. АНОД - параллелограмм. Соответственно его площадь равна удвоенной площади тр-ка АРД. Тр-ки BPК и АРД подобны по трём углам, значит их коэффициент подобия k=ВР:РД=2:3, а коэффициент подобия площадей k²=4/9. S(АРД)=S(BРК)/k²=9/4. S(АНОД)=2·9/4=4.5, Площадь исходного параллелограмма АВСД равна сумме площадей найденных параллелограммов НВКТ, ТКСО и АНОД. S(АВСД)=2+1+4.5=7.5 - это ответ 2.
dokmak140652
23.01.2022
Мы можем найти сторону которая лежит против угла 30°. Наверное, СВ - гипотенуза, поэтому сторона против угла в 30 ° будет равна половине гипотенузы, т.е 3 сантиметра. Записывается так. угол В =30° следовательно АС = 1/2 СВ АС=3см. Мы можем найти другой катет. По теореме Пифагора Он находится так б = √с в квадрате минус а в квадрате. = √36-9=√25=5см. Находим периметр. 5см + 3 см + 6 см = 14см. Находим площадь. Площадь прямоугольного треугольника равна половине его катетов. 1/2аб=1/2 5*3/2=7.5см в квадрате ответ: Площадь 7.5см в квадрате, периметр 12см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Написать подробнее решение и дано.СО 2 СТОЛБИКОМ-2 НОМЕРА 7
Треугольники АВК и CДМ равны т.к. АВ=СД, ВК=ДМ и ∠В=∠Д. В них ∠АВР=∠СДЕ, значит ВР=ДЕ.
Пусть одна часть в заданном отношении равна х, тогда ВР=ДЕ=2х, РД=3х, РЕ=РД-ДЕ=3х-2х=х.
В тр-ке ВСЕ РК║СЕ, ВР:РЕ=2:1, значит ВК:СК=2:1 - это ответ 1.
Параллельно сторонам АД и ВС через точку Р проведём отрезок НО.
Параллельно сторонам АВ и СД к прямой НО проведём отрезок КТ.
НВКТ - параллелограмм. Его площадь равна двум площадям треугольника BPК т.к. у них одинаковая высота к стороне ВК.
S(НBКТ)=2S(BРК)=2.
Площадь параллелограмма ТКСО равна половине НВКТ т.к. КС=ВК/2.
S(TKСО)=2/2=1.
АНОД - параллелограмм. Соответственно его площадь равна удвоенной площади тр-ка АРД.
Тр-ки BPК и АРД подобны по трём углам, значит их коэффициент подобия k=ВР:РД=2:3, а коэффициент подобия площадей k²=4/9.
S(АРД)=S(BРК)/k²=9/4.
S(АНОД)=2·9/4=4.5,
Площадь исходного параллелограмма АВСД равна сумме площадей найденных параллелограммов НВКТ, ТКСО и АНОД.
S(АВСД)=2+1+4.5=7.5 - это ответ 2.