Проведем через точку Р прямую PB, параллельную основанию MLтреугольника KLM. На касательной PL отметим точку А. <KLA=<KML (так как <KML - вписанный и опирается на дугу KL, а <KLA - угол между касательной LA и хордой KL, равный половине дуги KL - свойство).
<PLB=<KLA - вертикальные => <KML= <PLB. <PBL= <KLM (соответственные при параллельных ML и РВ), <KLM = <KML (углы при основании равнобедренного треугольника) => <PBL=<PLB и треугольник PLB равнобедренный. => PL=PB, HL=HB=PM/2.
По свойству касательной и секущей PL² =PK*PM = 8(8-a), где а - сторона треугольника KLM.
NL= a/2 (дано), LH=PM/2 = (8-a)/2. Проекция PN на КL - это отрезок NH = NL+LH = a/2+(8-a)/2 = 4.
ответ: 4 ед.
1) Получившийся треугольник авн равнобедренный( тк один угол прямой и бессиктрисса прямого угла проведена те 45, то есть в авн углы при основании равны - признак равнобедренного треугольника) отсюда ав=ан=5 , вс=5+5=10 В прямоугольнике проивоположные стороны равны -1св-во) отсюда P=10*2+5*2=20+10=30см
ответ 30см
2)P=4а, где а сторона ромба. Можно вычислить сторону: 8корней из 3/4 =2корня из 3
Ромб состоит из двух равных треугольников (равны по 3 признаку-3сторонам) Можно найти площадь ромба как сумму площадей двух треугольников
s=1/2 а а sin угла 1/2 * 2корня из 3 на 2корня из 3 на корень из 3 на 2 ( синус 60 корень из трех на два) ( Площадь вычислили по формуле площадь треугольника равна одной второй произведению сторон на синус угла между ними) S=3 на корень из 3 =) s ромба 2*3 корень из 3 = 6 корней из 3
Поделитесь своими знаниями, ответьте на вопрос:
Один из углов равнобедренной трапеции равен 47 градусов. Найдите остальные углы трапеции.
47°; 133°.
Объяснение:
сумма углов, прилежащих к боковой стороне трапеции, равна 180°.
углы, прилежащие к основанию, равны.
°