AndreevManaeva
?>

Решите задачу по данным рисунка

Геометрия

Ответы

Hugokate77729
Проведем МА⊥α и МВ⊥β.
МА = 12 - расстояние от М до α,
МВ = 16 - расстояние от М до β.

Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С.
МА⊥α, а⊂α, значит МА⊥а.
МВ⊥β, а⊂β, значит МВ⊥а.
Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒
а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла;
а⊥МС, ⇒ МС - искомое расстояние.

МАСВ - прямоугольник, АС = МВ = 16.
Из прямоугольного треугольника АМС по теореме Пифагора:
МС = √(МА² + АС²) = √(16² + 12²) =  √(256 + 144) = √400 = 20
dariagromova54
R1, r2, r3 - радиусы вписанных окружностей треугольников СНА, CНB и АВС соответственно.
В прямоугольном тр-ке высота, опущенная из прямого угла, делит его на два подобных тр-ка, которые, в свою очередь, подобны главному тр-ку. Значит отношение радиусов вписанных окружностей равно отношению соответственных сторон треугольников.
Пусть гипотенузы тр-ков СНА и CHВ равны: АС=5х и ВС=12х, тогда гипотенуза тр-ка АВС: АВ=√(АС²+ВС²)=√(5²х²+12²х²)=√169х²=13х.
r1:r2:r3=АС:ВС:АВ=5х:12х:13х=5:12:13  ⇒
r3=13 см - это ответ.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите задачу по данным рисунка
Ваше имя (никнейм)*
Email*
Комментарий*