2. По данным рисунка найдите углы треугольника ABC.
∠KBC = 112° => ∠ABC = 180-112 = 68°
∠BCD = 147° => ∠ACB = 180-147 = 33°
∠A = 180-(33+38) = 79°.
3. Используя теорему о внешнем угле треугольника, найдите ∠B ΔABC.
Теорема такова: Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом.
Внешний угол: Угол 163°
∠B + ∠A = 163°
5x+24+3x+19 = 163°
8x+24+19 = 163° => 8x+43 = 163°
8x = 163-43 => 8x = 120°
x = 120/8 => x = 15°
∠B = 5x+24 => ∠B = 15*5+24 = 99°.
4. Найти: острые углы ΔABC.
Опять же, используем теорему внешних углов: <C + <A = 150°
∠A = 90° => ∠C = 150-90 = 60°
∠B = 90-60 = 30°.
5. Найти высоту CK, если BC = 14.7.
∠COB = 90° (так как CK — высота, и перпендикулярна AB)
∠OBC = 30° => CO = CB/2 = 7.35 (По теореме 30 градусного угла прямоугольного треугольника).
Поделитесь своими знаниями, ответьте на вопрос:
Найти вектор равный BC + CD = AD
12√3 см²
Объяснение:
Дано: АВСД - трапеция, АВ=СД=4 см, ВС=4 см, ∠АВС=120°. Найти S(АВСД).
ΔАВС - равнобедренный, т.к. АВ=ВС, значит, ∠ВАС=∠ВСА=(180-120):2=30°
∠САД=∠ВСА=30° как внутренние накрест лежащие при ВС║АД и секущей АС
∠ВАД=∠Д=30+30=60°
Проведем высоты ВК и СН. Рассмотрим ΔСДН - прямоугольный.
∠Д=60°, ∠НСД=90-60=30°, значит ДН=1/2 СД=2 см по свойству катета, лежащего против угла 30°; АК=ДН=2 см;
АД=АК+КН+ДН=2+4+2=8 см
Найдем высоту трапеции по теореме Пифагора
СН=√(СД²-ДН²)=√(16-4)=√12=2√3 см.
S=(ВС+АД):2*СН=(4+8):2*2√3=12√3 см²