Объяснение:
Вспомним теорему о сумме углов, прилежащих к боковой стороне трапеции:
Углы, прилежащие только к боковой стороне трапеции, в сумме составляют 180°.
В этой задаче у нас фигурируют части. Складываем части:
3 + 2 = 5 частей - всего.
Теперь давайте найдем, сколько градусов приходится на каждую часть.
Для этого 180° разделим на 5 частей.
180° : 5 = 36° - приходится на каждую часть.
Теперь 36° умножаем на 2 и 3.
36° * 2 = 72° - меньший угол трапеции;
36° * 3 = 108° - больший угол трапеции.
Задача решена.
Поделитесь своими знаниями, ответьте на вопрос:
⦁ Найдите скалярное произведение векторов и , если
20°
Объяснение:
Дано (см. рисунок):
ΔАВС - равнобедренный
AD - биссектриса угла А
BD - биссектриса угла В
∠ADB = 100°
Найти: ∠С
Решение.
Так как треугольник ABC равнобедренный, то у него углы при основании равны ∠А=∠В. Биссектриса делит угол пополам, поэтому α=∠А/2 и β=∠В/2. Но ∠А=∠В и поэтому α=β. Значит, треугольник ADB также равнобедренный.
Найдём углы α и β. Сумма внутренних углов треугольника равна 180°: α + β + 100° = 180°. В силу этого α = β = (180-100)/2 = 40°.
Тогда ∠CАВ=∠СВА=2·α=2·40°=80°. Опять используем свойство:
Сумма внутренних углов треугольника равна 180°.
В силу этого ∠CАВ+∠СВА+∠С=180°. Отсюда
∠C=180°-(∠CАВ+∠СВА)=180°-(80°+80°)=180°-160°=20°.
ответ: 20°