Из условия известно, что стороны прямоугольника равны 8 дм и 1,5 м (=15 дм). Для того, чтобы найти диагональ прямоугольника рассмотрим прямоугольный треугольник образованный сторонами прямоугольника и диагональю.
Стороны прямоугольника это катеты прямоугольного треугольника, а диагональ прямоугольника — гипотенуза.
Для нахождения гипотенузы будем использовать теорему Пифагора.
Сумма квадратов катетов равна квадрату гипотенузы.
a^2 + b^2 = c^2;
8^2 + 15^2 = c^2;
64 + 225 = c^2;
c^2 = 289;
c = 17 дм. диагональ прямоугольника
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
3. В параллелограмме ABCD угол A равен 60°. Высота BE делит сторону AD на две равные части. Найдите длину диагонали BD, если периметр параллелограмма равен 96 см.
Докажем сначала следующее вс утверждение. Геометрическое место точек X, лежащих внутри трапеции ABCD (BC || AD) или на её сторонах, и таких, что S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD, есть отрезок, соединяющий середины оснований трапеции.
Действительно, пусть P и Q — середины оснований BC и AD трапеции ABCD, h - высота трапеции . Если точка X принадлежит отрезку PQ, то XP и XQ — медианы треугольников BXC и AXD, поэтому
Кроме того,
SABPQ = $\displaystyle {\frac{BP + AQ}{2}}$ . h = $\displaystyle {\frac{CP + DQ}{2}}$ . h = SCPQD.
Следовательно, S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD.
Пусть теперь X — точка внутри трапеции ABCD, для которой S$\scriptstyle \Delta$XAB = S$\scriptstyle \Delta$XCD (рис.2). Предположим, что X не лежит на прямой PQ. Поскольку S$\scriptstyle \Delta$XBP = S$\scriptstyle \Delta$XCP и S$\scriptstyle \Delta$XAQ = S$\scriptstyle \Delta$XDQ, то
SABPXQ = SCPXQD = $\displaystyle {\textstyle\frac{1}{2}}$SABCD.
Если точки X и C лежат по одну сторону от прямой PQ, то
$\displaystyle {\textstyle\frac{1}{2}}$SABCD = SABPQ + S$\scriptstyle \Delta$PXQ = $\displaystyle {\textstyle\frac{1}{2}}$SABCD + S$\scriptstyle \Delta$PXQ,
что невозможно. Аналогично для случая, когда точки X и C лежат по разные стороны от прямой PQ.
Пусть теперь ABCDEF — данный шестиугольник; AB || DE, BC || EF, CD || AF. Докажем, что треугольники ACE и BDF равновелики. В самом деле, пусть прямые AB и EF пересекаются в точке M, прямые AB и CD — в точке N, прямые CD и EF — в точке K (рис.2). Обозначим
$\displaystyle {\frac{MA}{MN}}$ = x, $\displaystyle {\frac{NC}{NK}}$ = y, $\displaystyle {\frac{KE}{KM}}$ = z.
Тогда
S$\scriptstyle \Delta$AME = x(1 - z)S$\scriptstyle \Delta$MNK, S$\scriptstyle \Delta$ANC = y(1 - x)S$\scriptstyle \Delta$MNK, S$\scriptstyle \Delta$CKE = z(1 - y)S$\scriptstyle \Delta$MNK.
Поэтому
S$\scriptstyle \Delta$ACE = S$\scriptstyle \Delta$MNK - S$\scriptstyle \Delta$AME - S$\scriptstyle \Delta$ANC - S$\scriptstyle \Delta$CKE =
= (1 - x(1 - z) - y(1 - x) - z(1 - y))S$\scriptstyle \Delta$MNK = (1 - x - y - z + xy + xz + yz)S$\scriptstyle \Delta$MNK.
Учитывая, что
$\displaystyle {\frac{MF}{MK}}$ = $\displaystyle {\frac{MA}{MN}}$ = x, $\displaystyle {\frac{NB}{NM}}$ = $\displaystyle {\frac{NC}{NK}}$ = y, $\displaystyle {\frac{KD}{KN}}$ = $\displaystyle {\frac{KE}{KM}}$ = z
(что вытекает из параллельности противоположных сторон данного шестиугольника), аналогично получим, что
S$\scriptstyle \Delta$BDF = (1 - x - y - z + xy + xz + yz)S$\scriptstyle \Delta$MNK.
Следовательно, S$\scriptstyle \Delta$ACE = S$\scriptstyle \Delta$BDF.
Пусть P, G, Q, H — середины отрезков AF, AB, CD и DE соответственно; O — точка пересечения отрезков PQ и GH (рис.3). Тогда, по ранее доказанному,
S$\scriptstyle \Delta$AOC = S$\scriptstyle \Delta$DOF, S$\scriptstyle \Delta$AOE = S$\scriptstyle \Delta$BOD, S$\scriptstyle \Delta$ACE = S$\scriptstyle \Delta$BDF.
Поэтому
S$\scriptstyle \Delta$BOF = S$\scriptstyle \Delta$BDF - S$\scriptstyle \Delta$DOF - S$\scriptstyle \Delta$BOD =
= S$\scriptstyle \Delta$ACE - S$\scriptstyle \Delta$AOC - S$\scriptstyle \Delta$AOE = S$\scriptstyle \Delta$OCE.
Следовательно, точка O принадлежит отрезку, соединяющему середины сторон BC и EF.
Другие решения: см. Квант, N5, 1986, с.33
Объяснение: