ответ:4)а 5)в 6)б 7)в
Объяснение:4)Т.к центральный угол О =100°=> и дуга, на которую он смотрит тоже равна 100°,тогда х=50,потому что он вписаный(вписаный угол равен половине дуги ,на которую он опирается)
5)угол равен 70,тогда дуга равна 140(описанный угол,дуга в 2р больше него)
Вся окружность =360
360-140=220(это дуга,на которую смотрит х),тогда сам х=220:2=110(угол вписанный)
6)О=64,дуга тоже 64(центральный),х описанный =64/2=32
7)Т.к ВО(это радиус)=АД,то АД=ДО т.к ДО тоже радиус,тогда ВО в 2р меньше ВО,угол В=90 т.к радиус ,проведенный в точку касания явл. перпендикуляром на эту касательную.Тогда мы можем применить свойство треугольника :сторона,лежащая напротив угла в 30°=половине гипотенузы ,тогда угол ВАО=30,а ВАО=ОВС т.к это касательные вышли из 1ой точки,тогда угол ВАС=60
1) В правильном шестиугольнике все стороны равны.
P₆ = 6a₆,
где а₆ - сторона шестиугольника.
6а₆ = 48
а₆ = 8 м
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a₆ = 6 м
Эта же окружность описана около квадрата.
Радиус окружности, описанной около квадрата:
R = a₄√2 / 2
6 = a₄ √2 / 2
a₄ = 12 / √2 = 6√2 м
2) Шестиугольник диагоналями делится на 6 равных равносторонних треугольников, так как центральный угол его равен 360°/6 = 60°.
Площадь одного треугольника:
S = a²√3/4 = 72√3 / 6
a²√3/4 = 12√3
a² = 48
a = 4√3 см - сторона шестиугольника.
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a = 4√3 см
Длина окружности:
C = 2πR = 2π · 4√3 = 8π√3 см
Поделитесь своими знаниями, ответьте на вопрос:
Паралелограм ABCD і трапеція ABMN (АВ — основа трапеції) не лежать в одній площині. Доведіть, що CD || MN.
Параллелограмм ABCD и трапеция ABMN имеют общую сторону AB.
а)
1. Если AB боковая сторона трапеции (см. рис. 1), то
AB∩MN = O - как боковые стороны трапеции.
O∈AB⊂(ABC) ⇒ MN∩(ABC) = O
2. Если AB основание трапеции (см. рис. 2), то
AB║MN - как основания трапеции.
MN║AB⊂(ABC) ⇒ MN║(ABC), значит MN не пересекает (ABC).
б)
DC⊂(ABD) т.к. D,C∈(ABD), значит DC не пересекает (ABD).
в)
CD║AB - как противоположные стороны параллелограмма.
AB║CD⊂(DCN) ⇒ AB║(DCN)
г)
D∈AD и D∈(NDB) ⇒ AD∦(NDB)