Сторона основания a = 6, апофема f = 7 радиус вписанной окружности основания r = √3/6·a = √3 радиус описанной окружности r = √3/3·а = 2√3 площадь основания s₀ = √3/4·a² = 9√3 площадь боковой грани s₁ = 1/2 af = 21 полная площадь s = s₀ + 3s₁ = 9√3 + 63 теперь найдём высоту пирамиды из прямоугольного треугольника, образованного радиусом вписанной окружности основания, апофемой и высотой h²+r² = f² h²+3 = 49 h² = 46 h = √46 объём пирамиды v = 1/3·s₀·h = 1/3·9√3·√46 = 3√3*√46
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вокружность радиуса 12см вписан правильный треугольник. найти его периметр.
1) из того, что вд - медиана, - равенство площадей треугольников авд и свд.
2) из равенства площадей - равенство сторон ав и вс.
3) из равенства сторон - вд - не только медиана треугольника авс, но и биссектриса (угол авд = углу свд) и высота (вд перпендикулярна ас).
4) из перпендикулярности вд к ас треугольник авд - прямоугольный.
5) из отношения 1: 2 катета вд к гипотенузе ав - угол а=30 градусов.
6) из суммы углов треугольника = 180 градусов - угол авд = 60 градусов.
7) из 3) угол свд = 60 градусов.
8) найти угол fвс.
9) сравнить угол fвс с углом свд.
10) сделать вывод.
успеха!