Сейчас я попробую, что-нибудь решить.
Я же всё-таки не знаток, мне недавно 16 исполнилось.
S1(Площадь правильного треугольника)=корень из 3 делим на 4 и умножаем на сторону в квадрате=SQRT3/4*a*a
S2(площадь тетраэдра)=S1*4(так как в тетраэдре 4 равносторонних треугольника)=SQRT(3)*a*a=30*SQRT3
То есть a*a=30
а=SQRT(30)
h(высота)=SQRT6/3*a=4,4721...=4,47
Теперь найду основание конуса.
Радиус вписанной окружности равен.
r=a*SQRT3/6=1,5811=1,58
S3(Вся площадь конуса)=ПЛощади окружности + площади боковой стороны=r*r*П=7,85374999 + П*r*SQRT(r*r+h*h) =7,85 +23,55 =31,4 дм в квадрате
Я очень надеюсь, что правильно, заметь, конусы и тетраэдры я не проходил нигде, просто соображаю неплохо!!
Скажи
Поделитесь своими знаниями, ответьте на вопрос:
4. Найдите модуль вектора i = -2a +1/2b, где a=i+ 5ј, Б= -4i - 2i
точка пересечения диагоналей делит их в одношении 2/3, (такое же отношение у оснований, но это не слишком важно). То есть части диагоналей, являющиеся боковыми сторонами треугольника с площадью 9, составляют 3/(3+2) = 3/5 от целых диагоналей.
Проведем из вершины малого основания прямую II диагонали, которая через эту вершину не проходит, до пересечения с продолжением большого основания. Получившийся треугольник имеет площадь, равную площади трапеции, поскольку его основание равно сумме оснований трапеции, а высота у них общая (расстояние от вершины малого основания до большого).
При этом боковые стороны получившегося треугольника равны целым диагоналям, то есть отношение его площади к площади треугольника, прилегающего к большому основанию трапеции, равно (5/3)^2.
Поэтому площадь трапеции равна 9*(5/3)^2 = 25.