Средние линии треугольника находятся втом же отношении, что и стороны треугольника.
Обозначим стороны треугольника буквами а, в и с.
Тогда а:в:с=2:3:4, т.е. а=2х, в=3х, с=4х
По условию, периметр Р=45см, т.е. а+в+с=45
2х+3х+4х=45
9х=45
х=45:9
х=5(см)
а=2х=2*5=10(см)
в=3х=3*5=15(см)
с=4х=4*5=20(см)
ответ:10 см, 15 см, 20 см.
Поделитесь своими знаниями, ответьте на вопрос:
Параллельные плоскости α и β пересекают сторону DM угла BDC соответственно в точках K и M, а сторону DС этого угла – соответственно в точках N и P. Найдите DM и DP, если DN =1/2NP, DN = 6 см, DK= 5 см. Выполните рисунок по условию задачи.
Подробно.
Пусть данный ромб АВСД.
Высота ВН=12 см, диагональ ВД=13 см.
Стороны ромба равны.
Диагональ ромба делит его на два равных треугольника.
∆ АВД=∆ СВД.
Проведем в равнобедренном ∆ АВД высоту АМ к стороне ВД и высоту ВН к стороне АД.
В ∆ ВНД катет НД=5 ( отношение сторон из Пифагоровых троек 5,12,13, можно проверить по т.Пифагора).
ДМ=МВ=13:2=6,5 см, т.к. АМ высота и медиана равнобедренного треугольника ВАД.
Прямоугольные ∆ ВНД и ∆ АМД подобны - имеют общий острый угол при Д.
Из подобия следует:
АМ:ВН=ДM:ДH.
АМ•5=12•6,5
AM=15,6 см
S ∆ АВД=АМ•ВД/2
S АВСД= 2 S ∆ АВД.
S АВСД=АМ•ВД=15,6•15=202,8 см²