Прикладывая угольник то одной, то другой стороной, ученик через точку "А" провёл два перпендикуляра к прямой "а" (рис. 102 Что можно сказать об этом угольнике ИТЕ
Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВМ/МС=8/6=4/3. Следовательно, отрезок ВМ=4. В треугольнике АВС по теореме косинусов: "Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними" Cosα = (b²+c²-a²)/2bc. (угол α - между b и c). В нашем случае: CosВ=(64+49-36)/2*8*7=11/16. Формула приведения: Sin²α+Cos²α=1. Тогда SinВ=√(1-121/16²)=√135/16. Площадь треугольника АВМ Sabm=(1/2)*АВ*ВМ*SinB=(1/2)8*4*√135/16=√135. ответ: Sabm=√135.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прикладывая угольник то одной, то другой стороной, ученик через точку "А" провёл два перпендикуляра к прямой "а" (рис. 102 Что можно сказать об этом угольнике ИТЕ
Следовательно, отрезок ВМ=4.
В треугольнике АВС по теореме косинусов: "Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними"
Cosα = (b²+c²-a²)/2bc. (угол α - между b и c). В нашем случае:
CosВ=(64+49-36)/2*8*7=11/16. Формула приведения: Sin²α+Cos²α=1.
Тогда SinВ=√(1-121/16²)=√135/16.
Площадь треугольника АВМ
Sabm=(1/2)*АВ*ВМ*SinB=(1/2)8*4*√135/16=√135.
ответ: Sabm=√135.