с геометрией! Вычисли площадь боковой поверхности наклонной треугольной призмы, если боковое ребро равно 15 см, а расстояния между боковыми ребрами равны 10см, 10 см, 12 см
В четырехугольнике НВРD угол D=150°, так как сумма внутренних углов четырехугольника равна 360°. Углы параллелограмма, прилежащие к одной стороне, в сумме равны 180° (свойство). Следовательно, <A=<C=180°-150°=30°. Тогда в прямоугольных треугольниках АВН и РВС стороны параллелограмма АВ и ВС - гипотенузы этих треугольников, а высоты ВН и ВР - катеты, лежащие против углов 30°. Тогда стороны АВ и ВС равны 12см и 32см соответственно. Противоположные стороны параллелограмма равны. AD=ВС=32cм, DC=АВ=12см. Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне. Sabcd=32*6=192cм² или Sabcd=12*16=192cм² . ответ: S=192см² .
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
с геометрией! Вычисли площадь боковой поверхности наклонной треугольной призмы, если боковое ребро равно 15 см, а расстояния между боковыми ребрами равны 10см, 10 см, 12 см
Углы параллелограмма, прилежащие к одной стороне, в сумме равны 180° (свойство). Следовательно,
<A=<C=180°-150°=30°.
Тогда в прямоугольных треугольниках АВН и РВС стороны параллелограмма АВ и ВС - гипотенузы этих треугольников, а высоты ВН и ВР - катеты, лежащие против углов 30°.
Тогда стороны АВ и ВС равны 12см и 32см соответственно.
Противоположные стороны параллелограмма равны.
AD=ВС=32cм, DC=АВ=12см.
Площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне.
Sabcd=32*6=192cм² или
Sabcd=12*16=192cм² .
ответ: S=192см² .