Если две хорды окружности, AB и CD пересекаются в точке Е, то произведение отрезков одной хорды равно произведению отрезков другой хорды:
AЕ•ЕB = CЕ•ЕD.
Пусть СЕ = х см, тогда ЕD=CD-CE= CD - х = 16- х, получим:
8·6 =х·(16 -х)
48= 16х - х²
х²-16х+48 =0
х₁ =12 х₂=4
Таким образом, СЕ = 12 см или СЕ= 4 см.
ответ: 12см или 4 см
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке 26 серединные перпендикуляры l_{1} и l_{2} отрезков AB и CD пересекаются в точке О. Найдите OC, если OD= OB и OA = 6 см.
Если две хорды окружности, AB и CD пересекаются в точке Е, то произведение отрезков одной хорды равно произведению отрезков другой хорды:
AЕ•ЕB = CЕ•ЕD.
Пусть СЕ = х см, тогда ЕD=CD-CE= CD - х = 16- х, получим:
8·6 =х·(16 -х)
48= 16х - х²
х²-16х+48 =0
х₁ =12 х₂=4
Таким образом, СЕ = 12 см или СЕ= 4 см.
ответ: 12см или 4 см