дан треугольник авс где а(-2, 3), в(-1, 5), С(1, 2) треугольник авс-треугольнику а1в1с1 найти а1, в, с, , где а середина сс1 и вв1 а1 совпадает с а, так как а центр симметрии
1) позначемо похилу АВ, проекцію ВС, відстань від точки А до площини - АС - отримаємо прямокутний трикутник АВС, в якому ВС і АС - катети, а АВ - гіпотенуза. Якщо ВС=АС, тоді отриманий трикутник АВС - рівнобедренний, тому його кути при основі АВ - рівні. Так як сума гострих кутів прямокутного трикутника дорівнює 90°, тоді кутА=кутВ=90÷2=45°
ВІДПОВІДЬ: кутВ між площиною та похилою дорівнює 45°
2) Так само позначемо кути, як у першому завданні АВС, і якщо катет АС дорівнює половині гіпотенузи АВ, тоді АС лежить навпроти кута В=30°(властивість кута 30°),
ВІДПОВІДЬ: кутВ=30°
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
дан треугольник авс где а(-2, 3), в(-1, 5), С(1, 2) треугольник авс-треугольнику а1в1с1 найти а1, в, с, , где а середина сс1 и вв1 а1 совпадает с а, так как а центр симметрии
Объяснение:
1) позначемо похилу АВ, проекцію ВС, відстань від точки А до площини - АС - отримаємо прямокутний трикутник АВС, в якому ВС і АС - катети, а АВ - гіпотенуза. Якщо ВС=АС, тоді отриманий трикутник АВС - рівнобедренний, тому його кути при основі АВ - рівні. Так як сума гострих кутів прямокутного трикутника дорівнює 90°, тоді кутА=кутВ=90÷2=45°
ВІДПОВІДЬ: кутВ між площиною та похилою дорівнює 45°
2) Так само позначемо кути, як у першому завданні АВС, і якщо катет АС дорівнює половині гіпотенузи АВ, тоді АС лежить навпроти кута В=30°(властивість кута 30°),
ВІДПОВІДЬ: кутВ=30°