В случае окружности, вписанного в прямоугольный треугольник — точки касания делят все стороны на некие равные отрезки.
То есть: Через точку B — проведены 2 касательные: катет BA & гипотенуза BC.
В точках касания — отрезки друг другу равны(теорема о 2 касательных, проведённых с одной точки), тоесть: BF == BG.
BF == BG ⇒ BF == BG = 6.
Одни и те же действия с отрезками FA & AH, они тоже друг другу равны, так как их касательные проведены с одной точки.
FA == AH = 2.
Точно так же с отрезками HC & GC: HC == GC = x.
По теореме Пифагора:
Вывод: P = 24 см.
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть координати вектора MN та його модуль, якщоМ(2; -1), N(6; -4
В случае окружности, вписанного в прямоугольный треугольник — точки касания делят все стороны на некие равные отрезки.
То есть: Через точку B — проведены 2 касательные: катет BA & гипотенуза BC.
В точках касания — отрезки друг другу равны(теорема о 2 касательных, проведённых с одной точки), тоесть: BF == BG.
BF == BG ⇒ BF == BG = 6.
Одни и те же действия с отрезками FA & AH, они тоже друг другу равны, так как их касательные проведены с одной точки.
FA == AH = 2.
Точно так же с отрезками HC & GC: HC == GC = x.
По теореме Пифагора:
Вывод: P = 24 см.