Не скажу, что это доказательство в виде теоремы. Скорее объяснение, которое легко запомнить и передать затем своими словами. Окружность называется вписанной в многоугольник, если стороны многоугольника являются для неё касательными. Очевидно, что не во всякий многоугольник можно вписать окружность. Но всякий многоугольник можно разделить на треугольники. А площадь треугольника можно найти половиной произведения стороны на высоту, проведенную к ней. S=0,5*h*a, где а - сторона треугольника, h- высота к ней. Для многоугольника его площадь - сумма площадей всех треугольников, на которые его можно разделить: S=S₁+S₂+ S₃ и т.д Высоты треугольников, на которые можно разделить описанный многоугольник, равны радиусу вписанной окружности, так как радиус перпендикулярен касательной в точке касания. . Тогда S=0,5*a₁*r+0,5*a₂*r+0,5*a₃* r+0,5*a₄*r и т.д. Вынесем общий множитель 0,5r за скобки⇒ S=r*0,5*(a₁+a₂+a₃+a₄+ an) Ясно, что 0,5*(a₁+a₂+a₃+a₄+an) - это полупериметр многоугольника Теперь можно площадь многоугольника, в который вписана окружность, записать как S=r*p, где r- радиус вписанной в многоугольник окружности, р- полупериметр этого многоугольника. Что и требовалось доказать. ----- [email protected]
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Побудуйте кут і запишіть його вершину та сторони: 1) кут РОС, що дорівнює 65°; 1) кут МАК, що дорівнює 115°?
Окружность называется вписанной в многоугольник, если стороны многоугольника являются для неё касательными.
Очевидно, что не во всякий многоугольник можно вписать окружность.
Но всякий многоугольник можно разделить на треугольники.
А площадь треугольника можно найти половиной произведения стороны на высоту, проведенную к ней.
S=0,5*h*a, где а - сторона треугольника, h- высота к ней.
Для многоугольника его площадь - сумма площадей всех треугольников, на которые его можно разделить:
S=S₁+S₂+ S₃ и т.д
Высоты треугольников, на которые можно разделить описанный многоугольник, равны радиусу вписанной окружности, так как радиус перпендикулярен касательной в точке касания. .
Тогда
S=0,5*a₁*r+0,5*a₂*r+0,5*a₃* r+0,5*a₄*r и т.д.
Вынесем общий множитель 0,5r за скобки⇒
S=r*0,5*(a₁+a₂+a₃+a₄+ an)
Ясно, что 0,5*(a₁+a₂+a₃+a₄+an) - это полупериметр многоугольника Теперь можно площадь многоугольника, в который вписана окружность, записать как
S=r*p, где r- радиус вписанной в многоугольник окружности, р- полупериметр этого многоугольника. Что и требовалось доказать.
-----
[email protected]